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Modern CNNs: Macro Design

• Macro Design: Patch Embedding + Token Mixer + Channel Mixer +

  Pre-Norm & Short-cut.

Norm

Channel
Mixer

Token 
Mixer

Norm

MetaFormer

Norm

Channel
Mixer

Attention

Norm

TransFormer

Channel
Mixer

DWConv
7 x 7

Norm

ConvNeXt
[1] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR, 2021
[2] PoolFormer: MetaFormer Is Actually What You Need for Vision. CVPR, 2022.
[3] A ConvNet for the 2020s. CVPR, 2022.

Published as a conference paper at ICLR 2021
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P

2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0

L
) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L
. The classification head is implemented by a MLP with one hidden layer at pre-training

time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
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Modern CNNs: ConvNeXt
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Figure 2. We modernize a standard ConvNet (ResNet) towards
the design of a hierarchical vision Transformer (Swin), without
introducing any attention-based modules. The foreground bars are
model accuracies in the ResNet-50/Swin-T FLOP regime; results
for the ResNet-200/Swin-B regime are shown with the gray bars. A
hatched bar means the modification is not adopted. Detailed results
for both regimes are in the appendix. Many Transformer archi-
tectural choices can be incorporated in a ConvNet, and they lead
to increasingly better performance. In the end, our pure ConvNet
model, named ConvNeXt, can outperform the Swin Transformer.

follows. Our starting point is a ResNet-50 model. We first
train it with similar training techniques used to train vision
Transformers and obtain much improved results compared to
the original ResNet-50. This will be our baseline. We then
study a series of design decisions which we summarized
as 1) macro design, 2) ResNeXt, 3) inverted bottleneck, 4)
large kernel size, and 5) various layer-wise micro designs. In
Figure 2, we show the procedure and the results we are able
to achieve with each step of the “network modernization”.
Since network complexity is closely correlated with the fi-
nal performance, the FLOPs are roughly controlled over the
course of the exploration, though at intermediate steps the
FLOPs might be higher or lower than the reference models.
All models are trained and evaluated on ImageNet-1K.

2.1. Training Techniques

Apart from the design of the network architecture, the
training procedure also affects the ultimate performance. Not

only did vision Transformers bring a new set of modules
and architectural design decisions, but they also introduced
different training techniques (e.g. AdamW optimizer) to vi-
sion. This pertains mostly to the optimization strategy and
associated hyper-parameter settings. Thus, the first step
of our exploration is to train a baseline model with the vi-
sion Transformer training procedure, in this case, ResNet-
50/200. Recent studies [7, 81] demonstrate that a set of
modern training techniques can significantly enhance the
performance of a simple ResNet-50 model. In our study,
we use a training recipe that is close to DeiT’s [73] and
Swin Transformer’s [45]. The training is extended to 300
epochs from the original 90 epochs for ResNets. We use the
AdamW optimizer [46], data augmentation techniques such
as Mixup [90], Cutmix [89], RandAugment [14], Random
Erasing [91], and regularization schemes including Stochas-
tic Depth [36] and Label Smoothing [69]. The complete set
of hyper-parameters we use can be found in Appendix A.1.
By itself, this enhanced training recipe increased the perfor-
mance of the ResNet-50 model from 76.1% [1] to 78.8%
(+2.7%), implying that a significant portion of the perfor-
mance difference between traditional ConvNets and vision
Transformers may be due to the training techniques. We will
use this fixed training recipe with the same hyperparameters
throughout the “modernization” process. Each reported ac-
curacy on the ResNet-50 regime is an average obtained from
training with three different random seeds.

2.2. Macro Design
We now analyze Swin Transformers’ macro network de-

sign. Swin Transformers follow ConvNets [28, 65] to use a
multi-stage design, where each stage has a different feature
map resolution. There are two interesting design considera-
tions: the stage compute ratio, and the “stem cell” structure.

Changing stage compute ratio. The original design of the
computation distribution across stages in ResNet was largely
empirical. The heavy “res4” stage was meant to be compat-
ible with downstream tasks like object detection, where a
detector head operates on the 14⇥14 feature plane. Swin-T,
on the other hand, followed the same principle but with a
slightly different stage compute ratio of 1:1:3:1. For larger
Swin Transformers, the ratio is 1:1:9:1. Following the de-
sign, we adjust the number of blocks in each stage from
(3, 4, 6, 3) in ResNet-50 to (3, 3, 9, 3), which also aligns
the FLOPs with Swin-T. This improves the model accuracy
from 78.8% to 79.4%. Notably, researchers have thoroughly
investigated the distribution of computation [53, 54], and a
more optimal design is likely to exist.

From now on, we will use this stage compute ratio.

Changing stem to “Patchify”. Typically, the stem cell de-
sign is concerned with how the input images will be pro-
cessed at the network’s beginning. Due to the redundancy

inherent in natural images, a common stem cell will aggres-
sively downsample the input images to an appropriate feature
map size in both standard ConvNets and vision Transformers.
The stem cell in standard ResNet contains a 7⇥7 convolution
layer with stride 2, followed by a max pool, which results
in a 4⇥ downsampling of the input images. In vision Trans-
formers, a more aggressive “patchify” strategy is used as
the stem cell, which corresponds to a large kernel size (e.g.
kernel size = 14 or 16) and non-overlapping convolution.
Swin Transformer uses a similar “patchify” layer, but with
a smaller patch size of 4 to accommodate the architecture’s
multi-stage design. We replace the ResNet-style stem cell
with a patchify layer implemented using a 4⇥4, stride 4 con-
volutional layer. The accuracy has changed from 79.4% to
79.5%. This suggests that the stem cell in a ResNet may be
substituted with a simpler “patchify” layer à la ViT which
will result in similar performance.

We will use the “patchify stem” (4⇥4 non-overlapping
convolution) in the network.

2.3. ResNeXt-ify
In this part, we attempt to adopt the idea of ResNeXt [87],

which has a better FLOPs/accuracy trade-off than a vanilla
ResNet. The core component is grouped convolution, where
the convolutional filters are separated into different groups.
At a high level, ResNeXt’s guiding principle is to “use more
groups, expand width”. More precisely, ResNeXt employs
grouped convolution for the 3⇥3 conv layer in a bottleneck
block. As this significantly reduces the FLOPs, the network
width is expanded to compensate for the capacity loss.

In our case we use depthwise convolution, a special case
of grouped convolution where the number of groups equals
the number of channels. Depthwise conv has been popular-
ized by MobileNet [34] and Xception [11]. We note that
depthwise convolution is similar to the weighted sum op-
eration in self-attention, which operates on a per-channel
basis, i.e., only mixing information in the spatial dimension.
The combination of depthwise conv and 1⇥ 1 convs leads
to a separation of spatial and channel mixing, a property
shared by vision Transformers, where each operation either
mixes information across spatial or channel dimension, but
not both. The use of depthwise convolution effectively re-
duces the network FLOPs and, as expected, the accuracy.
Following the strategy proposed in ResNeXt, we increase the
network width to the same number of channels as Swin-T’s
(from 64 to 96). This brings the network performance to
80.5% with increased FLOPs (5.3G).

We will now employ the ResNeXt design.

2.4. Inverted Bottleneck
One important design in every Transformer block is that it

creates an inverted bottleneck, i.e., the hidden dimension of
the MLP block is four times wider than the input dimension
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Figure 3. Block modifications and resulted specifications. (a) is
a ResNeXt block; in (b) we create an inverted bottleneck block and
in (c) the position of the spatial depthwise conv layer is moved up.

(see Figure 4). Interestingly, this Transformer design is con-
nected to the inverted bottleneck design with an expansion
ratio of 4 used in ConvNets. The idea was popularized by
MobileNetV2 [61], and has subsequently gained traction in
several advanced ConvNet architectures [70, 71].

Here we explore the inverted bottleneck design. Figure 3
(a) to (b) illustrate the configurations. Despite the increased
FLOPs for the depthwise convolution layer, this change
reduces the whole network FLOPs to 4.6G, due to the signif-
icant FLOPs reduction in the downsampling residual blocks’
shortcut 1⇥1 conv layer. Interestingly, this results in slightly
improved performance (80.5% to 80.6%). In the ResNet-200
/ Swin-B regime, this step brings even more gain (81.9% to
82.6%) also with reduced FLOPs.

We will now use inverted bottlenecks.

2.5. Large Kernel Sizes
In this part of the exploration, we focus on the behav-

ior of large convolutional kernels. One of the most distin-
guishing aspects of vision Transformers is their non-local
self-attention, which enables each layer to have a global
receptive field. While large kernel sizes have been used in
the past with ConvNets [40, 68], the gold standard (popular-
ized by VGGNet [65]) is to stack small kernel-sized (3⇥3)
conv layers, which have efficient hardware implementations
on modern GPUs [41]. Although Swin Transformers rein-
troduced the local window to the self-attention block, the
window size is at least 7⇥7, significantly larger than the
ResNe(X)t kernel size of 3⇥3. Here we revisit the use of
large kernel-sized convolutions for ConvNets.

Moving up depthwise conv layer. To explore large kernels,
one prerequisite is to move up the position of the depthwise
conv layer (Figure 3 (b) to (c)). That is a design decision
also evident in Transformers: the MSA block is placed prior
to the MLP layers. As we have an inverted bottleneck block,
this is a natural design choice — the complex/inefficient
modules (MSA, large-kernel conv) will have fewer channels,
while the efficient, dense 1⇥1 layers will do the heavy lifting.
This intermediate step reduces the FLOPs to 4.1G, resulting
in a temporary performance degradation to 79.9%.

Increasing the kernel size. With all of these preparations,
the benefit of adopting larger kernel-sized convolutions is sig-

ResNet block ConvNeXt block

ResNet MobileNet ConvNeXt

model image
size #param. FLOPs throughput

(image / s)
IN-1K

top-1 acc.
ImageNet-1K trained models

•RegNetY-16G [54] 2242 84M 16.0G 334.7 82.9
•EffNet-B7 [71] 6002 66M 37.0G 55.1 84.3
•EffNetV2-L [72] 4802 120M 53.0G 83.7 85.7
�DeiT-S [73] 2242 22M 4.6G 978.5 79.8
�DeiT-B [73] 2242 87M 17.6G 302.1 81.8
� Swin-T 2242 28M 4.5G 757.9 81.3
•ConvNeXt-T 2242 29M 4.5G 774.7 82.1
� Swin-S 2242 50M 8.7G 436.7 83.0
•ConvNeXt-S 2242 50M 8.7G 447.1 83.1
� Swin-B 2242 88M 15.4G 286.6 83.5
•ConvNeXt-B 2242 89M 15.4G 292.1 83.8
� Swin-B 3842 88M 47.1G 85.1 84.5
•ConvNeXt-B 3842 89M 45.0G 95.7 85.1
•ConvNeXt-L 2242 198M 34.4G 146.8 84.3
•ConvNeXt-L 3842 198M 101.0G 50.4 85.5

ImageNet-22K pre-trained models
•R-101x3 [39] 3842 388M 204.6G - 84.4
•R-152x4 [39] 4802 937M 840.5G - 85.4
•EffNetV2-L [72] 4802 120M 53.0G 83.7 86.8
•EffNetV2-XL [72] 4802 208M 94.0G 56.5 87.3
�ViT-B/16 (T) [67] 3842 87M 55.5G 93.1 85.4
�ViT-L/16 (T) [67] 3842 305M 191.1G 28.5 86.8
•ConvNeXt-T 2242 29M 4.5G 774.7 82.9
•ConvNeXt-T 3842 29M 13.1G 282.8 84.1
•ConvNeXt-S 2242 50M 8.7G 447.1 84.6
•ConvNeXt-S 3842 50M 25.5G 163.5 85.8
� Swin-B 2242 88M 15.4G 286.6 85.2
•ConvNeXt-B 2242 89M 15.4G 292.1 85.8
� Swin-B 3842 88M 47.0G 85.1 86.4
•ConvNeXt-B 3842 89M 45.1G 95.7 86.8
� Swin-L 2242 197M 34.5G 145.0 86.3
•ConvNeXt-L 2242 198M 34.4G 146.8 86.6
� Swin-L 3842 197M 103.9G 46.0 87.3
•ConvNeXt-L 3842 198M 101.0G 50.4 87.5
•ConvNeXt-XL 2242 350M 60.9G 89.3 87.0
•ConvNeXt-XL 3842 350M 179.0G 30.2 87.8

Table 1. Classification accuracy on ImageNet-1K. Similar to
Transformers, ConvNeXt also shows promising scaling behavior
with higher-capacity models and a larger (pre-training) dataset. In-
ference throughput is measured on a V100 GPU, following [45]. On
an A100 GPU, ConvNeXt can have a much higher throughput than
Swin Transformer. See Appendix E. (T)ViT results with 90-epoch
AugReg [67] training, provided through personal communication
with the authors.

board, sometimes with a substantial margin (e.g. 0.8% for
ConvNeXt-T). Without specialized modules such as shifted
windows or relative position bias, ConvNeXts also enjoy
improved throughput compared to Swin Transformers.

A highlight from the results is ConvNeXt-B at 3842: it
outperforms Swin-B by 0.6% (85.1% vs. 84.5%), but with
12.5% higher inference throughput (95.7 vs. 85.1 image/s).
We note that the FLOPs/throughput advantage of ConvNeXt-

B over Swin-B becomes larger when the resolution increases
from 2242 to 3842. Additionally, we observe an improved
result of 85.5% when further scaling to ConvNeXt-L.

ImageNet-22K. We present results with models fine-tuned
from ImageNet-22K pre-training at Table 1 (lower). These
experiments are important since a widely held view is that
vision Transformers have fewer inductive biases thus can per-
form better than ConvNets when pre-trained on a larger scale.
Our results demonstrate that properly designed ConvNets
are not inferior to vision Transformers when pre-trained
with large dataset — ConvNeXts still perform on par or
better than similarly-sized Swin Transformers, with slightly
higher throughput. Additionally, our ConvNeXt-XL model
achieves an accuracy of 87.8% — a decent improvement
over ConvNeXt-L at 3842, demonstrating that ConvNeXts
are scalable architectures.

On ImageNet-1K, EfficientNetV2-L, a searched architec-
ture equipped with advanced modules (such as Squeeze-and-
Excitation [35]) and progressive training procedure achieves
top performance. However, with ImageNet-22K pre-training,
ConvNeXt is able to outperform EfficientNetV2, further
demonstrating the importance of large-scale training.

In Appendix B, we discuss robustness and out-of-domain
generalization results for ConvNeXt.

3.3. Isotropic ConvNeXt vs. ViT
In this ablation, we examine if our ConvNeXt block de-

sign is generalizable to ViT-style [20] isotropic architec-
tures which have no downsampling layers and keep the
same feature resolutions (e.g. 14⇥14) at all depths. We
construct isotropic ConvNeXt-S/B/L using the same feature
dimensions as ViT-S/B/L (384/768/1024). Depths are set
at 18/18/36 to match the number of parameters and FLOPs.
The block structure remains the same (Fig. 4). We use the
supervised training results from DeiT [73] for ViT-S/B and
MAE [26] for ViT-L, as they employ improved training
procedures over the original ViTs [20]. ConvNeXt models
are trained with the same settings as before, but with longer
warmup epochs. Results for ImageNet-1K at 2242 resolution
are in Table 2. We observe ConvNeXt can perform generally
on par with ViT, showing that our ConvNeXt block design
is competitive when used in non-hierarchical models.

model #param. FLOPs throughput
(image / s)

training
mem. (GB)

IN-1K
acc.

�ViT-S 22M 4.6G 978.5 4.9 79.8
•ConvNeXt-S (iso.) 22M 4.3G 1038.7 4.2 79.7
�ViT-B 87M 17.6G 302.1 9.1 81.8
•ConvNeXt-B (iso.) 87M 16.9G 320.1 7.7 82.0
�ViT-L 304M 61.6G 93.1 22.5 82.6
•ConvNeXt-L (iso.) 306M 59.7G 94.4 20.4 82.6

Table 2. Comparing isotropic ConvNeXt and ViT. Training
memory is measured on V100 GPUs with 32 per-GPU batch size.

[1] A ConvNet for the 2020s. CVPR, 2022.



Modern CNNs: ConvNeXt.V2

• CNNs benefit from Masked Image Modeling (MIM) Pre-training.

[1] ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders. CVPR, 2023. [2] Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling. ICLR, 2023. [3] Architecture-Agnostic Masked Image Modeling - From ViT back to CNN. ICML, 2023.

Under review as a conference paper at ICLR 2023

Figure 2: Sparse masked modeling with hierarchy. To adapt convolution to irregular masked input, visible
patches are gathered into a sparse image and encoded by sparse convolution. To pre-train a hierarchical encoder,
we employ a UNet-style architecture to decode multi-scale sparse feature maps, where all empty positions are
filled with mask embedding. This “densifying” is necessary to reconstruct a dense image. Only the regression
loss on masked patches will be optimized. After pre-training, only the encoder is used for downstream tasks.

3.1 SPARSELY GATHERING UNMASKED PATCHES

We start by the patch-wise masking strategy widely used in masked image modeling. An image is
divided into several non-overlapping square patches, each of which will then be masked independently
with a given probability called mask ratio. The key to a masked image modeling algorithm is how to
eliminate the pixel information from these masked patches.

Previous transformer-based masked modeling can easily eliminate the information by directly
removing masked patches or replacing them with a mask token. This ease relies on the fact that vision
transformers are born to handle irregular (variable-length) input and operate on non-overlapping

image patches. Since convnets cannot do this, new approaches have to be sought. A straightforward
idea is to set all masked pixels to zero and feed this image to a convnet. This, however, has three
evident shortcomings: (i) the computation on masked regions is redundant; (ii) it would disturb the
data distribution of pixel values, as illustrated in figure 1; (iii) the patterns on mask maps will vanish
after applying several convolutions to this zero-out masked image. We examine problem (iii) in
figure 3, where we also give our solution. Note that this problem is particularly acute when using
modern deep convnets due to the large number of successive convolutional blocks.

To overcome the problems, we propose to sparsely gather all unmasked patches into a sparse
image, and then use sparse convolutions1 to encode it. This strategy: (i) ensures no information is
leaked; (ii) can be applied directly to any convnet without backbone modifications; (iii) is efficient
as sparse convolution computes only at visible places; (iv) solves the aforementioned issues of “pixel
distribution shift” and “mask pattern vanishing”. As shown in figure 3, sparse convolution will skip
all masked positions on sparse feature maps, and only computes at unmasked points. This helps to
prevent the shape of the mask pattern from changing with convolution, thus ensures a consistent
masking effect and ratio throughout all convolution layers. Another fact is that when fine-tuning, all
sparse convolutional layers can be naturally reduced to ordinary dense ones. This is true because
dense images are actually the special cases of sparse images that have no “holes”.

3.2 HIERARCHICAL ENCODING AND DECODING

By “hierarchical” encoding, we mean the encoder will generate a set of feature maps with different
resolutions, namely different scales. Taking a ResNet-style model for example, it typically contains 4
stages each with a series of convolutional blocks and a downsampling module. The feature resolution
is downsampled by a factor of 2 after every stage. For an image shaped as H ⇥W , a ResNet-50
produces feature maps at 4 scales with resolutions of H

4 ⇥ W

4 , H

8 ⇥ W

8 , H

16 ⇥ W

16 , and H

32 ⇥ W

32 . Let
S1, S2, S3, and S4 be these sparse features, respectively. They will be used to decode.

1By “sparse convolution”, we mean the submanifold sparse convolution that computes only when the kernel
center covers a non-empty element. Please refer to Graham & van der Maaten (2017) for more details.
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MIM pre-training with SparK (or FCMAE in ConvNeXt.V2) Sparse Conv for Masking

case ft
g.avg. 83.7
L1 84.3
L2 84.6

(a) Global aggregation G(·). L2 Norm-based
aggregation function produces the best result.

case ft
(||Xi||� µ)/� 84.5
1/

P
||Xi|| 83.8

||Xi||/
P

||Xi|| 84.6
(b) Normalization operator, N(·). Divisive normaliza-
tion is an effective channel importance calibrator.

case ft
w/o skip 84.0
w/ skip 84.6

(c) Residual connection helps with GRN op-
timization and leads to better performance.

case ft
Baseline 83.7
LRN [45] 83.2
BN [41] 80.5
LN [2] 83.8
GRN 84.6

(d) Feature normalization. GRN outperforms
other normalizations through global contrasting.

case ft #param
Baseline 83.7 89M
SE [37] 84.4 109M
CBAM [72] 84.5 109M
GRN 84.6 89M

(e) Feature re-weighting. GRN does effective and effi-
cient feature re-weighting without parameter overhead.

case ft
Baseline 83.7
drop at ft. 78.8
add at ft. 80.6
both 84.6

(f) GRN in pre-training/fine-tuning. To be
effective, GRN should be used in both stages.

Table 2. GRN ablations with ConvNeXt-Base. We report fine-tuning accuracy on ImageNet-1K. Our final proposal is marked in gray .

to initially perform an identity function and gradually adapt
during training. The importance of residual connection is
demonstrated in Table 2c.
ConvNeXt V2. We incorporate the GRN layer into the orig-
inal ConvNeXt block, as illustrated in Figure 5. We em-
pirically found that LayerScale [65] becomes unnecessary
when GRN is applied and can be removed. Using this new
block design, we create various models with varying effi-
ciency and capacity, which we refer to as the ConvNeXt V2
model family. These models range from lightweight (e.g.
Atto [70]) to compute-intensive (e.g. Huge) ones. Detailed
model configurations can be found in the appendix.
Impact of GRN. We now pre-train ConvNeXt V2 using
the FCMAE framework and evaluate the impact of GRN.
From visualization in Figure 3 and cosine distance analysis
in Figure 4, we can observe that ConvNeXt V2 effectively
mitigates the feature collapse issue. The cosine distance
values are consistently high, indicating that feature diver-
sity is maintained across layers. This behavior is similar to
that of the MAE pre-trained ViT model [31]. Overall, this
suggests that ConvNeXt V2 learning behavior can resemble
ViT, under a similar masked image pre-training framework.

Next, we evaluate the fine-tuning performance.

V1 + Sup, 300ep. V1 + FCMAE V2 + FCMAE
83.8 83.7 84.6

When equipped with GRN, the FCMAE pre-trained
model can significantly outperform the 300 epoch super-
vised counterpart. GRN improves the representation qual-
ity by enhancing the feature diversity, which was absent in
the V1 model but has proven crucial for masked-based pre-
training. Note this improvement is achieved without adding
additional parameter overhead or increased FLOPS.2

Relation to feature normalization methods. Can other
normalization layers [2,41,45,67,73] perform as well as the

2The additional affine parameters �/� are negligible.

Figure 5. ConvNeXt Block Designs. In ConvNeXt V2, we add
the GRN layer after the dimension-expansion MLP layer and drop
LayerScale [65] as it becomes redundant.

global response normalization (GRN) layer? In Table 2d,
we compare GRN with the three widely used normaliza-
tion layers: Local Response Normalization (LRN) [45],
Batch Normalization (BN) [41], and Layer Normalization
(LN) [2]. We observe that only GRN can significantly out-
perform the supervised baseline. LRN lacks global context
as it only contrasts channels within nearby neighbors. BN
normalizes spatially along the batch axis, which is unsuit-
able for masked inputs. LN implicitly encourages feature
competition through global mean and variance standardiza-
tion but does not work as well as GRN.

Relation to feature gating methods. Another way to en-
hance competition across neurons is to use dynamic feature
gating methods [37, 56, 69, 72, 78]. In Table 2e, we com-
pare our GRN with two classic gating layers: squeeze-and-
excite (SE) [37] and convolutional block attention module
(CBAM) [72]. SE focuses on channel gating, while CBAM
focuses on spatial gating. Both modules can increase the
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ConvNeXt.V1     ConvNeXt.V2
Global Response Normalization (GRN)

Figure 4. Feature cosine distance analysis. As the number of
total layers varies for different architectures, we plot the distance
values against the normalized layer indexes. We observe that the
ConvNeXt V1 FCMAE pre-trained model exhibits severe feature
collapse behavior. The supervised model also shows a reduction
in feature diversity, but only in the final layers. This decrease in
diversity in the supervised model is likely due to the use of the
cross-entropy loss, which encourages the model to focus on class-
discriminative features while suppressing the others.

Xi 2 R
H⇥W is the feature map of the i-th channel. We

reshape it as a HW dimensional vector and compute the
average pair-wise cosine distance across the channels by
1
C2

P
C

i

P
C

j

1�cos(Xi,Xj)
2 . A higher distance value indi-

cates more diverse features, while a lower value indicates
feature redundancy.

To perform this analysis, we randomly select 1,000 im-
ages from different classes in the ImageNet-1K validation
set and extract the high-dimensional features from each
layer of different models, including the FCMAE models,
the ConvNeXt supervised model [52] and the MAE pre-
trained ViT model [31]. We then compute the distance per
layer for each image and average the values across all im-
ages. The results are plotted in Figure 4. The FCMAE pre-
trained ConvNeXt model exhibits a clear tendency towards
feature collapse, consistent with our observations from the
previous activation visualizations. This motivates us to con-
sider ways to diversify the features during learning and pre-
vent feature collapse.

Approach. There are many mechanisms in the brain that
promote neuron diversity. For example, lateral inhibi-
tion [6, 30] can help to sharpen the response of the acti-
vated neuron and increase the contrast and selectivity of in-
dividual neurons to the stimulus while also increasing the
diversity of responses across the population of neurons. In
deep learning, this form of lateral inhibition can be imple-
mented by response normalization [45]. In this work, we
introduce a new response normalization layer called global
response normalization (GRN), which aims to increase the
contrast and selectivity of channels. Given an input feature,
X 2 R

H⇥W⇥C , the proposed GRN unit consists of three
steps: 1) global feature aggregation, 2) feature normaliza-
tion, and 3) feature calibration.

Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

# gamma, beta: learnable affine transform parameters

# X: input of shape (N,H,W,C)

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)

nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)

return gamma * (X * nx) + beta + X

First, we aggregate a spatial feature map Xi into a vector
gx with a global function G(·):

G(X) := X 2 RH⇥W⇥C ! gx 2 RC
. (1)

This can be viewed as a simple pooling layer. We ex-
perimented with different functions in Table 2a. Interest-
ingly, global average pooling, a widely used feature ag-
gregator [37, 72], did not perform well in our case. In-
stead, we found that using norm-based feature aggregation,
specifically, using L2-norm, resulted in better performance.
This gives us a set of aggregated values G(X) = gx =
{||X1||, ||X2||, . . . , ||XC ||} 2 RC where G(X)i = ||Xi||
is a scalar that aggregates the statistics of the i-th channel.

Next, we apply a response normalization function N (·)
to the aggregated values. Concretely, we use a standard di-
visive normalization as follows,

N (||Xi||) := ||Xi|| 2 R ! ||Xi||P
j=1,...,C ||Xj ||

2 R, (2)

where ||Xi|| is the L2-norm of the i-th channel. 1 Intu-
itively, for the i-th channel, Eqn. 2 computes its relative
importance compared to all the other channels. Similar to
other forms of normalization [42, 45, 68], this step creates
a feature competition across channels by mutual inhibition.
In Table 2b, we also examine the use of other normalization
functions and find that the simple divisive normalization
works best, though standardization (||Xi|| � µ)/� yields
similar results when applied to the same L2-norm aggre-
gated values.

Finally, we calibrate the original input responses using
the computed feature normalization scores:

Xi = Xi ⇤N (G(X)i) 2 RH⇥W (3)

The core GRN unit is very easy to implement, requiring
only three lines of code, and has no learnable parameters.
The pseudo-code for the GRN unit is in Algorithm 1.

To ease optimization, we add two additional learnable
parameters, � and �, and initialize them to zero. We also
add a residual connection between the input and output of
the GRN layer. The resulting final GRN block is Xi =
�⇤Xi⇤N (G(X)i)+�+Xi. This setup allows a GRN layer

1To account for the increased number of channels at deeper layers, in
practice, we also scale the normalized value by the channel count C.
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Table 3. ImageNet-1K fine-tuning (FT) top-1 accuracy (%) with
ResNet and ConvNeXt of various model scales. We adopt the
300-epoch fine-tuning protocols for both architectures. ‡ denotes
our reproduced results.
Methods #Para. Sup. MoCoV3‡ SimMIM‡ SparK A2MIM
Target (M) Label CL RGB RGB RGB
ResNet-50 25.6 79.8 80.1 79.9 80.6 80.4

ResNet-101 44.5 81.3 81.6 81.3 82.2 81.9

ResNet-152 60.2 81.8 82.0 81.9 82.7 82.5

ResNet-200 64.7 82.1 82.5 82.2 83.1 83.0

ConvNeXt-T 28.6 82.1 82.3 82.1 82.7 82.5

ConvNeXt-S 50.2 83.1 83.3 83.2 84.1 83.7

ConvNeXt-B 88.6 83.5 83.7 83.6 84.8 84.1

refers to the momentum encoder. Our A2MIM outperforms
CL and MIM baselines, and A2MIM+ achieves competitive
results as current state-of-the-art methods with complex
supervision, e.g., SplitMask (MIM with CL combined),
iBOT (complex teacher-student architecture), and CIM
(pre-trained BEiT as supervision). Based on ViT-S/B/L,
A2MIM significantly improves the baseline SimMIM by
0.5%/0.4%/0.5% with the RGB target and 0.7%/0.7%/0.6%
with the HOG feature as supervision.

CNNs. We then compare A2MIM with classical self-
supervised learning methods (Inpainting (Pathak et al.,
2016), Relative-Loc (Doersch et al., 2015), and Rotation (Gi-
daris et al., 2018)), CL, and MIM methods with 100/300
pre-training epochs. We modified MIM methods to run them
on ResNet-50: the learnable mask token is employed to the
encoder for BEiT (Bao et al., 2022), Data2Vec (Baevski
et al., 2022), and SimMIM (Xie et al., 2021b) after the
stem (the output feature of 56 ⇥ 56 resolutions); the en-
coder of MAE randomly selects 25% from 56⇥ 56 output
features of the stem as unmasked patches and takes the
reorganized 28 ⇥ 28 patches as the input of four stages.
In Tab. 2, our approach achieves competitive performance
with state-of-the-art contrastive-based methods under 100-
epoch FT evaluation. Note that MIM methods see fewer
training samples per epoch than CL methods (e.g., 40% vs.
200% of patches) and usually require longer pre-training
epochs. Based on a longer FT evaluation, A2MIM (300-
epoch) outperforms contrastive-based methods with even
fewer training epochs. Meanwhile, A2MIM also improves
the baseline SimMIM† (+0.8%) and the concurrent work
CIM (+0.4%) in terms of 100-epoch FT for the longer pre-
training. Besides, we also report the linear probing (Lin.)
results of the fast pre-training for reference, although we
focus on learning representations with better fine-tuning
performances. Although A2MIM achieves lower Lin. re-
sults than popular CL methods, A2MIM still improves the
baseline by 0.6%. Moreover, we further conduct scaling-up
experiments of A2MIM and pre-training methods based on
ResNet and ConvNeXt models. Notice that two concurrent
works proposed after our A2MIM (SparK (Tian et al., 2023)
and ConvNeXtV2 (Woo et al., 2023)) are specially designed

Table 4. Performance of object detection and semantic segmenta-
tion tasks based on ViT-B on COCO and ADE-20K.
Method Target Epochs IN-1K COCO ADE-20K

PT FT APbox APmask mIoU
DeiT (Sup.) Label 300 81.8 47.9 42.9 47.0
MoCoV3 CL 300 83.2 47.9 42.7 47.3
DINO CL 400 83.6 46.8 41.5 47.2
BEiT DALLE 300 83.2 43.1 38.2 47.1
iBOT EMA 400 84.0 48.4 42.7 48.0
PeCo VQ-VAE 300 84.5 43.9 39.8 46.7
MAE RGB 1600 83.6 48.5 42.8 48.1
MaskFeat HOG 800 84.0 49.2 43.2 48.8
SimMIM RGB 800 83.8 48.9 43.0 48.4
CAE DALLE 800 83.6 49.2 43.3 48.8
A

2
MIM RGB 800 84.2 49.4 43.5 49.0

MIM approaches for CNNs, which employ the sparse con-
volution to handle the irregular masked input. As shown in
Table 3, we compare A2MIM with DeiT (as the supervised
baseline), MoCoV3, SimMIM, and SparK, where A2MIM
noticeably surpasses the two popular self-supervised meth-
ods (MoCoV3 and SimMIM). Despite the proposed A2MIM
yields inferior performances than SparK, A2MIM can also
work for Transformer architectures.

5.3. Transfer Learning Experiments

Object detection and segmentation on COCO. To verify
the transferring abilities, we benchmark CL and MIM meth-
ods on object detection and segmentation with COCO (Lin
et al., 2014). For evaluation on CNN, we follow the setup
in MoCo, which fine-tunes Mask R-CNN (He et al., 2017)
with ResNet-50-C4 backbone using 2⇥ schedule on the
COCO train2017 and evaluates on the COCO val2017. Re-
sults in Tab. 5 indicate that A2MIM (300-epoch) outper-
forms contrastive-based methods with longer pre-training
(+0.7% APbox and +0.6% APmask). For evaluation on
Transformer, we follow MAE and CAE, which efficiently
fine-tunes Mask R-CNN with ViT-B backbone using 1⇥
schedule. In Tab. 4, A2MIM (800-epoch) is superior to pop-
ular contrastive-based and MIM methods, e.g., outperforms
MAE (1600-epoch) by 0.9% APbox and 0.8% APmask.

Table 5. Performance of object detection and semantic segmenta-
tion tasks based on ResNet-50 on COCO and ADE20K.

Method Target Epochs IN-1K COCO ADE-20K
PT FT APbox APmask mIoU

Sup. Label 90 79.8 38.2 33.3 36.1
SimCLR CL 800 79.9 37.9 33.3 37.6
MoCoV2 CL 800 79.8 39.2 34.3 37.5
BYOL CL 400 80.1 38.9 34.2 37.2
SwAV CL 800 80.2 38.4 33.8 37.3
SimSiam CL 400 80.0 39.2 34.4 37.2
Balow Twins CL 800 79.9 39.2 34.3 37.3
SimMIM‡ RGB 300 79.9 39.1 34.2 37.4
CIM BEiT 300 80.4 - - 38.0
A

2
MIM RGB 300 80.4 39.8 34.9 38.3
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Backbone Method #param FLOPs Val acc.
ConvNeXt V1-B Supervised 89M 15.4G 83.8
ConvNeXt V1-B FCMAE 89M 15.4G 83.7
ConvNeXt V2-B Supervised 89M 15.4G 84.3 (+0.5)
ConvNeXt V2-B FCMAE 89M 15.4G 84.6 (+0.8)
ConvNeXt V1-L Supervised 198M 34.4G 84.3
ConvNeXt V1-L FCMAE 198M 34.4G 84.4
ConvNeXt V2-L Supervised 198M 34.4G 84.5 (+0.2)
ConvNeXt V2-L FCMAE 198M 34.4G 85.6 (+1.3)

Table 3. Co-design matters. When the architecture and the learn-
ing framework are co-designed and used together, masked image
pre-training becomes effective for ConvNeXt. We report the fine-
tuning performance from 800 epoch FCMAE pre-trained models.
The relative improvement is bigger with a larger model.

contrast of individual channels, similar to what GRN does.
GRN is much simpler and more efficient as it does not re-
quire additional parameter layers (such as MLPs).

The role of GRN in pre-training/fine-tuning. Finally, we
examine the importance of GRN in pre-training and fine-
tuning. We present results in Table 2f where we either re-
move GRN from fine-tuning or add newly initialized GRN
only at the time of fine-tuning. Either way, we observe a
significant performance degradation, suggesting that keep-
ing GRN in both pre-training and fine-tuning is important.

5. ImageNet Experiments
In this section, we present and analyze two key propos-

als, the FCMAE pre-training framework and ConvNeXt V2
architecture, which are co-designed to make masked-based
self-supervised pre-training successful. We show these de-
signs synergize well and provide a strong foundation for
scaling the model to various sizes. Additionally, we com-
pare our approach to previous masked image modeling ap-
proaches through experiments. Furthermore, we show that
our largest ConvNeXt V2 Huge model, which has been pre-
trained using the FCMAE framework and fine-tuned on the
ImageNet-22K dataset, can achieve a new state-of-the-art
of 88.9% top-1 accuracy on the ImageNet-1K dataset, us-
ing only publicly available data.

Co-design matters. In this paper, we conduct a unique
study that involves co-designing both the self-supervised
learning framework (FCMAE) and the model architecture
improvement (GRN layer), through an empirical study of
their learning behavior. The results presented in Table 3
demonstrate the importance of this approach.

We found that using the FCMAE framework without
modifying the model architecture has a limited impact on
representation learning quality. Similarly, the new GRN
layer has a rather small effect on performance under the
supervised setup. However, the combination of the two
results in a significant improvement in fine-tuning perfor-

Backbone Method #param PT epoch FT acc.
ViT-B BEiT 88M 800 83.2
ViT-B MAE 88M 1600 83.6
Swin-B SimMIM 88M 800 84.0
ConvNeXt V2-B FCMAE 89M 800 84.6
ConvNeXt V2-B FCMAE 89M 1600 84.9
ViT-L BEiT 307M 800 85.2
ViT-L MAE 307M 1600 85.9
Swin-L SimMIM 197M 800 85.4
ConvNeXt V2-L FCMAE 198M 800 85.6
ConvNeXt V2-L FCMAE 198M 1600 85.8
ViT-H MAE 632M 1600 86.9
Swin V2-H SimMIM 658M 800 85.7
ConvNeXt V2-H FCMAE 659M 800 85.8
ConvNeXt V2-H FCMAE 659M 1600 86.3

Table 4. Comparisons with previous masked image modeling
approaches. The pre-training data is the IN-1K training set. All
self-supervised methods are benchmarked by the end-to-end fine-
tuning performance with an image size of 224. We underline the
highest accuracy for each model size and bold our best results.

mance. This supports the idea that both the model and learn-
ing framework should be considered together, particularly
when it comes to self-supervised learning.

Model scaling. In this study, we evaluated a range of
8 models with different sizes, from a low-capacity 3.7M
Atto model to a high-capacity 650M Huge model. We pre-
trained these models using the proposed FCMAE frame-
work and compared the fine-tuning results to the fully su-
pervised counterparts.

The results, shown in Figure 1, demonstrate strong
model scaling behavior, with consistently improved perfor-
mance over the supervised baseline across all model sizes.
This is the first time the benefit of masked image model-
ing has been demonstrated in such a broad model spectrum,
both in terms of effectiveness and efficiency. The complete
tabulated results can be found in the appendix.

Comparisons with previous methods. We compare our
approach to previous masked auto-encoder methods [3, 31,
77], which were all designed for transformer-based mod-
els. The results are summarized in Table 4. Our framework
outperforms the Swin transformer pre-trained with Sim-
MIM [77] across all model sizes. Compared to the plain ViT
pre-trained with MAE [31], our approach performs simi-
larly up to the Large model regime, despite using much
fewer parameters (198M vs 307M). However, in the huge
model regime, our approach slightly lagged behind. This
might be because a huge ViT model can benefit more from
self-supervised pre-training. As we will see next, the gap
might be closed with additional intermediate fine-tuning.

ImageNet-22K intermediate fine-tuning. We also present
ImageNet-22K intermediate fine-tuning results [3]. The
training process involves three steps: 1) FCMAE pre-
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Figure 4. Feature cosine distance analysis. As the number of
total layers varies for different architectures, we plot the distance
values against the normalized layer indexes. We observe that the
ConvNeXt V1 FCMAE pre-trained model exhibits severe feature
collapse behavior. The supervised model also shows a reduction
in feature diversity, but only in the final layers. This decrease in
diversity in the supervised model is likely due to the use of the
cross-entropy loss, which encourages the model to focus on class-
discriminative features while suppressing the others.

Xi 2 R
H⇥W is the feature map of the i-th channel. We

reshape it as a HW dimensional vector and compute the
average pair-wise cosine distance across the channels by
1
C2

P
C

i

P
C

j

1�cos(Xi,Xj)
2 . A higher distance value indi-

cates more diverse features, while a lower value indicates
feature redundancy.

To perform this analysis, we randomly select 1,000 im-
ages from different classes in the ImageNet-1K validation
set and extract the high-dimensional features from each
layer of different models, including the FCMAE models,
the ConvNeXt supervised model [52] and the MAE pre-
trained ViT model [31]. We then compute the distance per
layer for each image and average the values across all im-
ages. The results are plotted in Figure 4. The FCMAE pre-
trained ConvNeXt model exhibits a clear tendency towards
feature collapse, consistent with our observations from the
previous activation visualizations. This motivates us to con-
sider ways to diversify the features during learning and pre-
vent feature collapse.

Approach. There are many mechanisms in the brain that
promote neuron diversity. For example, lateral inhibi-
tion [6, 30] can help to sharpen the response of the acti-
vated neuron and increase the contrast and selectivity of in-
dividual neurons to the stimulus while also increasing the
diversity of responses across the population of neurons. In
deep learning, this form of lateral inhibition can be imple-
mented by response normalization [45]. In this work, we
introduce a new response normalization layer called global
response normalization (GRN), which aims to increase the
contrast and selectivity of channels. Given an input feature,
X 2 R

H⇥W⇥C , the proposed GRN unit consists of three
steps: 1) global feature aggregation, 2) feature normaliza-
tion, and 3) feature calibration.

Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

# gamma, beta: learnable affine transform parameters

# X: input of shape (N,H,W,C)

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)

nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)

return gamma * (X * nx) + beta + X

First, we aggregate a spatial feature map Xi into a vector
gx with a global function G(·):

G(X) := X 2 RH⇥W⇥C ! gx 2 RC
. (1)

This can be viewed as a simple pooling layer. We ex-
perimented with different functions in Table 2a. Interest-
ingly, global average pooling, a widely used feature ag-
gregator [37, 72], did not perform well in our case. In-
stead, we found that using norm-based feature aggregation,
specifically, using L2-norm, resulted in better performance.
This gives us a set of aggregated values G(X) = gx =
{||X1||, ||X2||, . . . , ||XC ||} 2 RC where G(X)i = ||Xi||
is a scalar that aggregates the statistics of the i-th channel.

Next, we apply a response normalization function N (·)
to the aggregated values. Concretely, we use a standard di-
visive normalization as follows,

N (||Xi||) := ||Xi|| 2 R ! ||Xi||P
j=1,...,C ||Xj ||

2 R, (2)

where ||Xi|| is the L2-norm of the i-th channel. 1 Intu-
itively, for the i-th channel, Eqn. 2 computes its relative
importance compared to all the other channels. Similar to
other forms of normalization [42, 45, 68], this step creates
a feature competition across channels by mutual inhibition.
In Table 2b, we also examine the use of other normalization
functions and find that the simple divisive normalization
works best, though standardization (||Xi|| � µ)/� yields
similar results when applied to the same L2-norm aggre-
gated values.

Finally, we calibrate the original input responses using
the computed feature normalization scores:

Xi = Xi ⇤N (G(X)i) 2 RH⇥W (3)

The core GRN unit is very easy to implement, requiring
only three lines of code, and has no learnable parameters.
The pseudo-code for the GRN unit is in Algorithm 1.

To ease optimization, we add two additional learnable
parameters, � and �, and initialize them to zero. We also
add a residual connection between the input and output of
the GRN layer. The resulting final GRN block is Xi =
�⇤Xi⇤N (G(X)i)+�+Xi. This setup allows a GRN layer

1To account for the increased number of channels at deeper layers, in
practice, we also scale the normalized value by the channel count C.
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Figure 4. Feature cosine distance analysis. As the number of
total layers varies for different architectures, we plot the distance
values against the normalized layer indexes. We observe that the
ConvNeXt V1 FCMAE pre-trained model exhibits severe feature
collapse behavior. The supervised model also shows a reduction
in feature diversity, but only in the final layers. This decrease in
diversity in the supervised model is likely due to the use of the
cross-entropy loss, which encourages the model to focus on class-
discriminative features while suppressing the others.
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cates more diverse features, while a lower value indicates
feature redundancy.

To perform this analysis, we randomly select 1,000 im-
ages from different classes in the ImageNet-1K validation
set and extract the high-dimensional features from each
layer of different models, including the FCMAE models,
the ConvNeXt supervised model [52] and the MAE pre-
trained ViT model [31]. We then compute the distance per
layer for each image and average the values across all im-
ages. The results are plotted in Figure 4. The FCMAE pre-
trained ConvNeXt model exhibits a clear tendency towards
feature collapse, consistent with our observations from the
previous activation visualizations. This motivates us to con-
sider ways to diversify the features during learning and pre-
vent feature collapse.

Approach. There are many mechanisms in the brain that
promote neuron diversity. For example, lateral inhibi-
tion [6, 30] can help to sharpen the response of the acti-
vated neuron and increase the contrast and selectivity of in-
dividual neurons to the stimulus while also increasing the
diversity of responses across the population of neurons. In
deep learning, this form of lateral inhibition can be imple-
mented by response normalization [45]. In this work, we
introduce a new response normalization layer called global
response normalization (GRN), which aims to increase the
contrast and selectivity of channels. Given an input feature,
X 2 R

H⇥W⇥C , the proposed GRN unit consists of three
steps: 1) global feature aggregation, 2) feature normaliza-
tion, and 3) feature calibration.

Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

# gamma, beta: learnable affine transform parameters

# X: input of shape (N,H,W,C)

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)

nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)

return gamma * (X * nx) + beta + X

First, we aggregate a spatial feature map Xi into a vector
gx with a global function G(·):

G(X) := X 2 RH⇥W⇥C ! gx 2 RC
. (1)

This can be viewed as a simple pooling layer. We ex-
perimented with different functions in Table 2a. Interest-
ingly, global average pooling, a widely used feature ag-
gregator [37, 72], did not perform well in our case. In-
stead, we found that using norm-based feature aggregation,
specifically, using L2-norm, resulted in better performance.
This gives us a set of aggregated values G(X) = gx =
{||X1||, ||X2||, . . . , ||XC ||} 2 RC where G(X)i = ||Xi||
is a scalar that aggregates the statistics of the i-th channel.

Next, we apply a response normalization function N (·)
to the aggregated values. Concretely, we use a standard di-
visive normalization as follows,

N (||Xi||) := ||Xi|| 2 R ! ||Xi||P
j=1,...,C ||Xj ||

2 R, (2)

where ||Xi|| is the L2-norm of the i-th channel. 1 Intu-
itively, for the i-th channel, Eqn. 2 computes its relative
importance compared to all the other channels. Similar to
other forms of normalization [42, 45, 68], this step creates
a feature competition across channels by mutual inhibition.
In Table 2b, we also examine the use of other normalization
functions and find that the simple divisive normalization
works best, though standardization (||Xi|| � µ)/� yields
similar results when applied to the same L2-norm aggre-
gated values.

Finally, we calibrate the original input responses using
the computed feature normalization scores:

Xi = Xi ⇤N (G(X)i) 2 RH⇥W (3)

The core GRN unit is very easy to implement, requiring
only three lines of code, and has no learnable parameters.
The pseudo-code for the GRN unit is in Algorithm 1.

To ease optimization, we add two additional learnable
parameters, � and �, and initialize them to zero. We also
add a residual connection between the input and output of
the GRN layer. The resulting final GRN block is Xi =
�⇤Xi⇤N (G(X)i)+�+Xi. This setup allows a GRN layer

1To account for the increased number of channels at deeper layers, in
practice, we also scale the normalized value by the channel count C.
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Large Kernels: RepLKNet

• Large-Kernel (LK) Convolutions are efficient and competitive as Self-attention.

• Training extremely large convolutions with Structural Re-parameterization.
input

7×7 3×3

BN BN
+

input

7×7
re-parameterize

input

7×7 3×3

+

fuse BN

kernel parameters re-parameterized kernel

Figure 2. An example of re-parameterizing a small kernel (e.g., 3⇥3) into a large one (e.g., 7⇥7). See [28, 31] for details.

Figure 3. Illustration to convolution with small feature map and
large kernel. Two outputs at adjacent locations only share a part of
kernel weights. Translational equivariance does not strictly hold.

Table 4. Results of various kernel sizes in the last stage of Mo-
bileNet V2. Kernel sizes in previous stages remain to be 3⇥ 3.

Kernel size ImageNet acc (%) Cityscapes mIoU (%)
3⇥3 71.76 72.31
7⇥7 72.00 74.30
13⇥13 71.97 74.62

ture [8,36]. Fortunately, we find simply enlarging the kernel
size in CNNs can effectively improve the shape bias. Please
refer to Appendix C for details.

Guideline 5: large kernel (e.g., 13⇥13) is useful even on
small feature maps (e.g., 7⇥7). To validate it, We en-
large the DW convolutions in the last stage of MobileNet
V2 to 7⇥7 or 13⇥13, hence the kernel size is on par with or
even larger than feature map size (7⇥7 by default). We ap-
ply re-parameterization to the large kernels as suggested by
Guideline 3. Table 4 shows although convolutions in the last
stage already involve very large receptive field, further in-
creasing the kernel sizes still leads to performance improve-
ments, especially on downstream tasks such as Cityscapes.
Remark 5. When kernel size becomes large, notice that
translational equivariance of CNNs does not strictly hold.
As illustrated in Fig. 3, two outputs at adjacent spatial lo-
cations share only a fraction of the kernel weights, i.e.,
are transformed by different mappings. The property also
agrees with the “philosophy” of ViTs – relaxing the symmet-
ric prior to obtain more capacity. Interestingly, we find 2D
Relative Position Embedding (RPE) [5,78], which is widely
used in the transformer community, can also be viewed as a
large depth-wise kernel of size (2H�1)⇥(2W �1), where
H and W are feature map height and width respectively.
Large kernels not only help to learn the relative positions
between concepts, but also encode the absolute position in-
formation due to padding effect [53].

4. RepLKNet: a Large-Kernel Architecture
Following the above guidelines, in this section we pro-

pose RepLKNet, a pure CNN architecture with large ker-
nel design. To our knowledge, up to now CNNs still domi-
nate small models [113,115], while vision transformers are
believed to be better than CNNs under more complexity
budget. Therefore, in the paper we mainly focus on rel-
atively large models (whose complexity is on par with or
larger than ResNet-152 [42] or Swin-B [61]), in order to ver-
ify whether large kernel design could eliminate the perfor-
mance gap between CNNs and ViTs.

4.1. Architecture Specification

We sketch the architecture of RepLKNet in Fig. 4:
Stem refers to the beginning layers. Since we target at

high performance on downstream dense-prediction tasks,
we desire to capture more details by several conv layers at
the beginning. After the first 3⇥3 with 2⇥ downsampling,
we arrange a DW 3⇥3 layer to capture low-level patterns, a
1⇥1 conv, and another DW 3⇥3 layer for downsampling.

Stages 1-4 each contains several RepLK Blocks, which
use shortcuts (Guideline 2) and DW large kernels (Guide-
line 1). We use 1⇥1 conv before and after DW conv as
a common practice. Note that each DW large conv uses a
5⇥5 kernel for re-parameterization (Guideline 3), which is
not shown in Fig. 4. Except for the large conv layers which
provide sufficient receptive field and the ability to aggregate
spatial information, the model’s representational capacity is
also closely related to the depth. To provide more nonlinear-
ities and information communications across channels, we
desire to use 1⇥1 layers to increase the depth. Inspired by
the Feed-Forward Network (FFN) which has been widely
used in transformers [35,61] and MLPs [27,87,88], we use
a similar CNN-style block composed of shortcut, BN, two
1⇥1 layers and GELU [43], so it is referred to as ConvFFN
Block. Compared to the classic FFN which uses Layer Nor-
malization [3] before the fully-connected layers, BN has an
advantage that it can be fused into conv for efficient infer-
ence. As a common practice, the number of internal chan-
nels of the ConvFFN Block is 4⇥ as the input. Simply fol-
lowing ViT and Swin, which interleave attention and FFN
blocks, we place a ConvFFN after each RepLK Block.

Transition Blocks are placed between stages, which first
increase the channel dimension via 1⇥1 conv and then con-
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Table 1. Inference speed of a stack of 24-layer depth-wise convolutions with various kernel sizes and resolutions on a single GTX 2080Ti
GPU. The input shape is (64, 384, R, R). Baselines are evaluated with Pytorch 1.9.0 + cuDNN 7.6.5, in FP32 precision.

Resolution R Impl Latency (ms) @ Kernel size
3 5 7 9 13 17 21 27 29 31

16⇥ 16
Pytorch 5.6 11.0 14.4 17.6 36.0 57.2 83.4 133.5 150.7 171.4
Ours 5.6 6.5 6.4 6.9 7.5 8.4 8.4 8.4 8.3 8.4

32⇥ 32
Pytorch 21.9 34.1 54.8 76.1 141.2 230.5 342.3 557.8 638.6 734.8
Ours 21.9 28.7 34.6 40.6 52.5 64.5 73.9 87.9 92.7 96.7

64⇥ 64
Pytorch 69.6 141.2 228.6 319.8 600.0 977.7 1454.4 2371.1 2698.4 3090.4
Ours 69.6 112.6 130.7 152.6 199.7 251.5 301.0 378.2 406.0 431.7

layers, which can be as large as the feature maps. Although
they use very large kernels, they do not intend to answer the
key questions we desire: why do traditional CNNs under-
perform ViTs, and how to apply large kernels in common
CNNs. Besides, both [40] and [74] do not evaluate their
models on strong baselines, e.g., models larger than Swin-
L. Hence it is still unclear whether large-kernel CNNs can
scale up well as transformers.
Concurrent works.

ConvMixer [90] uses up to 9⇥9 convolutions to replace
the “mixer” component of ViTs [35] or MLPs [87, 88].
MetaFormer [108] suggests pooling layer is an alternate
to self-attention. ConvNeXt [62] employs 7⇥7 depth-wise
convolutions to design strong architectures, pushing the
limit of CNN performances. Although those works show
excellent performances, they do not show benefits from
much larger convolutions (e.g., 31⇥31).

2.2. Model Scaling Techniques
Given a small model, it is a common practice to scale

it up for better performance, thus scaling strategy plays a
vital role in the resultant accuracy-efficiency trade-offs. For
CNNs, existing scaling approaches usually focus on model
depth, width, input resolution [32, 70, 84], bottleneck ratio
and group width [32, 70]. Kernel size, however, is often
neglected. In Sec. 3, we will show that the kernel size is
also an important scaling dimension in CNNs, especially
for downstream tasks.

2.3. Structural Re-parameterization
Structural Re-parameterization [27–31] is a methodol-

ogy of equivalently converting model structures via trans-
forming the parameters. For example, RepVGG targeted at
a deep inference-time VGG-like (e.g., branch-free) model,
and constructed extra ResNet-style shortcuts parallel to the
3⇥3 layers during training. In contrast to a real VGG-like
model that is difficult to train [42], such shortcuts helped the
model reach a satisfactory performance. After training, the
shortcuts are absorbed into the parallel 3⇥3 kernels via a
series of linear transformations, so that the resultant model
becomes a VGG-like model. In this paper, we use this
methodology to add a relatively small (e.g., 3⇥3 or 5⇥5)
kernel into a very large kernel. In this way, we make the

very large kernel capable of capturing small-scale patterns,
hence improve the performance of the model.

3. Guidelines of Applying Large Convolutions
Trivially applying large convolutions to CNNs usually

leads to inferior performance and speed. In this section, we
summarize 5 guidelines for effectively using large kernels.

Guideline 1: large depth-wise convolutions can be effi-
cient in practice. It is believed that large-kernel convo-
lutions are computationally expensive because the kernel
size quadratically increases the number of parameters and
FLOPs. The drawback can be greatly overcome by apply-
ing depth-wise (DW) convolutions [18,46]. For example, in
our proposed RepLKNet (see Table 5 for details), increas-
ing the kernel sizes in different stages from [3, 3, 3, 3] to
[31, 29, 27, 13] only increases the FLOPs and number of pa-
rameters by 18.6% and 10.4% respectively, which is accept-
able. The remaining 1⇥1 convolutions actually dominate
most of the complexity.

One may concern that DW convolutions could be very
inefficient on modern parallel computing devices like
GPUs. It is true for conventional DW 3⇥3 kernels [46, 77,
114], because DW operations introduce low ratio of compu-
tation vs. memory access cost [66], which is not friendly to
modern computing architecture. However, we find when
kernel size becomes large, the computational density in-
creases: for example, in a DW 11⇥11 kernel, each time
we load a value from the feature map, it can attend at most
121 multiplications, while in a 3⇥3 kernel the number is
only 9. Therefore, according to the roofline model, the ac-
tual latency should not increase as much as the increasing
of FLOPs when kernel size becomes larger.
Remark 1. Unfortunately, we find off-the-shelf deep learn-
ing tools (such as Pytorch) support large DW convolutions
poorly, as shown in Table 1. Hence we try several ap-
proaches to optimize the CUDA kernels. FFT-based ap-
proach [67] appears reasonable to implement large convo-
lutions. However, in practice we find block-wise (inverse)
implicit gemm algorithm is a better choice. The implemen-
tation has been integrated into the open-sourced framework
MegEngine [1] and we omit the details here. We have also
released an efficient implementation [2] for PyTorch. Ta-
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Table 11. ConvNeXt with different kernel sizes. The models are pretrained on ImageNet-1K in 120 epochs with 224⇥224 input and
finetuned on ADE20K with UperNet in 80K iterations. On ADE20K, we test the single-scale mIoU, and compute the FLOPs with input of
2048⇥512, following Swin.

ImageNet ADE20K
Kernel size Architecture Top-1 Params FLOPs mIoU Params FLOPs
7-7-7-7 ConvNeXt-Tiny 81.0 29M 4.5G 44.6 60M 939G
7-7-7-7 ConvNeXt-Small 82.1 50M 8.7G 45.9 82M 1027G
7-7-7-7 ConvNeXt-Base 82.8 89M 15.4G 47.2 122M 1170G
31-29-27-13 ConvNeXt-Tiny 81.6 32M 6.1G 46.2 64M 973G
31-29-27-13 ConvNeXt-Small 82.5 58M 11.3G 48.2 90M 1081G
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Abstract

We revisit large kernel design in modern convolutional
neural networks (CNNs). Inspired by recent advances in vi-
sion transformers (ViTs), in this paper, we demonstrate that
using a few large convolutional kernels instead of a stack
of small kernels could be a more powerful paradigm. We
suggested five guidelines, e.g., applying re-parameterized
large depth-wise convolutions, to design efficient high-
performance large-kernel CNNs. Following the guidelines,
we propose RepLKNet, a pure CNN architecture whose ker-
nel size is as large as 31⇥31, in contrast to commonly used
3⇥3. RepLKNet greatly closes the performance gap be-
tween CNNs and ViTs, e.g., achieving comparable or supe-
rior results than Swin Transformer on ImageNet and a few
typical downstream tasks, with lower latency. RepLKNet
also shows nice scalability to big data and large models,
obtaining 87.8% top-1 accuracy on ImageNet and 56.0%
mIoU on ADE20K, which is very competitive among the
state-of-the-arts with similar model sizes. Our study fur-
ther reveals that, in contrast to small-kernel CNNs, large-
kernel CNNs have much larger effective receptive fields and
higher shape bias rather than texture bias. Code & mod-
els at https://github.com/megvii-research/
RepLKNet.

1. Introduction
Convolutional neural networks (CNNs) [42, 55] used to

be a common choice of visual encoders in modern computer

*This work is supported by the National Natural Science Foundation of
China (Nos.61925107, U1936202, 62021002) and the Beijing Academy of
Artificial Intelligence (BAAI). This work is done during Xiaohan Ding’s
internship at MEGVII Technology.

†Project leader and corresponding author.

(A) ResNet-101 (B) ResNet-152 (C) RepLKNet-13 (D) RepLKNet-31

Figure 1. The Effective Receptive Field (ERF) of ResNet-101/152
and RepLKNet-13/31 respectively. A more widely distributed
dark area indicates a larger ERF. More layers (e.g., from ResNet-
101 to ResNet-152) help little in enlarging ERFs. Instead, our
large kernel model RepLKNet effectively obtains large ERFs.

vision systems. However, recently, CNNs [42, 55] have
been greatly challenged by Vision Transformers (ViTs) [35,
61, 89, 98], which have shown leading performances on
many visual tasks – not only image classification [35, 109]
and representation learning [4, 10, 17, 105], but also many
downstream tasks such as object detection [25, 61], seman-
tic segmentation [98, 103] and image restoration [11, 56].
Why are ViTs super powerful? Some works believed that
multi-head self-attention (MHSA) mechanism in ViTs plays
a key role. They provided empirical results to demon-
strate that, MHSA is more flexible [52], capable (less in-
ductive bias) [21], more robust to distortions [68, 103], or
able to model long-range dependencies [71, 93]. But some
works challenge the necessity of MHSA [121], attribut-
ing the high performance of ViTs to the proper building
blocks [34], and/or dynamic sparse weights [40,116]. More
works [21,40,44,100,121] explained the superiority of ViTs
from different point of views.

In this work, we focus on one view: the way of build-
ing up large receptive fields. In ViTs, MHSA is usually
designed to be either global [35, 80, 98] or local but with
large kernels [61, 72, 92], thus each output from a single
MHSA layer is able to gather information from a large re-
gion. However, large kernels are not popularly employed

1

ar
X

iv
:2

20
3.

06
71

7v
4 

 [c
s.C

V
]  

2 
A

pr
 2

02
2

Visual attention network 741

Fig. 8 Visualization results of e�ective receptive field (ERF), which is visualized by using Ref. [106]. We randomly select 100 images and
visualize their averaged ERF in an image. We compare di�erent ERF produced by di�erent methods.

Table 7 Comparision with the state-of-the-art methods on ImageNet
validation set. Params means parameter. FLOPs denotes floating
point operations. Top-1 Acc represents Top-1 accuracy. w/o LS means
without LayerScale

Method Params. (M) FLOPs (G) Top-1 Acc (%)
Tansformer-based methods

DeiT-Tiny/16 [19] 5.7 1.3 72.2
DeiT-Small/16 [19] 22.1 4.6 79.8
PVT-Tiny [20] 13.2 1.9 75.1
PVT-Small [20] 24.5 3.8 79.8
PVT-Medium [20] 44.2 6.7 81.2
PVT-Large [20] 61.4 9.8 81.7
Swin-T [15] 28.3 4.5 81.3
Swin-S [15] 49.6 8.7 83.0
Focal-T [22] 29.1 4.9 82.2
Focal-S [22] 51.1 9.1 83.5

CNN-based methods
ResNet18 [5] 11.7 1.8 69.8
ResNet50 [5] 25.6 4.1 76.5
ResNet101 [5] 44.7 7.9 77.4
ResNet152 [5] 60.2 11.6 78.3
ConvNeXt-T [21] 28.6 4.5 82.1
ConvNeXt-S [21] 50.1 8.7 83.1
ConvNeXt-B [21] 89.0 15.4 83.8
VAN-B0 4.1 0.9 75.4
VAN-B0 w/o LS 4.1 0.9 75.2
VAN-B1 13.9 2.5 81.1
VAN-B1 w/o LS 13.9 2.5 81.0
VAN-B2 26.6 5.0 82.8
VAN-B2 w/o LS 26.6 5.0 82.9
VAN-B3 44.8 9.0 83.9
VAN-B3 w/o LS 44.8 9.0 83.8
VAN-B4 60.3 12.2 84.2
VAN-B4 w/o LS 60.3 12.2 84.2

in Fig. 6), which demonstrates its ability to capture
long-range dependence.

E�ective receptive field (ERF) is proposed
by Ref. [106]. To demonstrate the capability of
our method to capture long-range dependencies, we
visualize the ERF by adopting Ref. [106]. Here, we
randomly select 100 images in ImageNet val dataset

Table 8 Comparision with the state-of-the-art methods on ImageNet
validation set. Params means parameter. FLOPs denotes floating
point operations. Top-1 Acc represents Top-1 accuracy. All models
are pretrained on ImageNet-22K dataset

Method Params. (M) Input
size FLOPs (G) Top-1

Acc (%)
Tansformer-based methods

ViT-B/16 [13] 87 3842 55.5 85.4
Swin-S [15] 50 2242 8.7 83.2
Swin-B [15] 88 2242 15.4 85.2
Swin-B [15] 88 3842 47.0 86.4
Swin-L [15] 197 2242 34.5 86.3
Swin-L [15] 197 3842 103.9 87.3
CoAtNet-3 [103] 168 3842 107.4 87.6

CNN-based methods
E�NetV2-L [104] 120 4802 53.0 86.8
E�NetV2-XL [104] 208 4802 94.0 87.3
ConvNeXt-S [21] 50 2242 8.7 84.6
ConvNeXt-S [21] 50 3842 25.5 85.8
ConvNeXt-B [21] 89 3842 45.1 86.8
ConvNeXt-B [21] 89 2242 15.4 85.8
ConvNeXt-L [21] 198 2242 34.4 86.6
ConvNeXt-L [21] 198 3842 101.0 87.5
ConvNeXt-XL [21] 350 3842 179.0 87.8
FocalNet-L [105] 197.1 2242 34.2 86.5
FocalNet-L [105] 197.1 3842 100.6 87.3
RepLKNet-B [39] 79 2242 15.3 85.2
RepLKNet-B [39] 79 3842 45.1 86.0
RepLKNet-L [39] 172 3842 96.0 86.6
VAN-B4 60 2242 12.2 85.7
VAN-B4 60 3842 35.9 86.6
VAN-B5 90 2242 17.2 86.3
VAN-B5 90 3842 50.6 87.0
VAN-B6 200 2242 38.9 86.9
VAN-B6 200 3842 114.3 87.8

and resize them to 1120 ◊ 1120. Then, we visualize
their ERF and average them in a single image. As
shown in Fig. 8, we compare the ERF of di�erent
methods, including ResNet [5], Swin Transformer [15],
ConvNeXt [21], DeiT [19], and our VAN. It clearly
shows VAN-B2 has a larger ERF than Swin-T [15]
and ConvNeXt [21]. Deit-S has a global ERF and

Effective receptive field

Swin-T     ConvNeXt-T   RepLKNet
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Table 5: Object detection on PASCAL VOC 2007. Faster RCNN is equipped with various backbone
networks that are pre-trained for 120 epochs on ImageNet-1K. The pre-trained ConvNeXt-T is
obtained from its GitHub repository. FLOPs are based on input sizes of (1280, 800). Methods marked
with * are implemented by us.

Model Kernel Size mAP (%) (") #Param FLOPs

ResNet-50 (He et al., 2016) 3-3-3-3 74.0 - -
ResNet-101 (He et al., 2016) 3-3-3-3 74.3 - -
ConvNeXt-T (Liu et al., 2022b) 7-7-7-7 80.6 45M 208G
ConvNeXt-T (RepLKNet)⇤ (Ding et al., 2022) 31-29-27-13 81.3 55M 207G
SLaK-T 51-49-47-13 82.7 49M 205G

see an encouraging trend: the performance consistently improves with the increase of kernel size and
our 51⇥ 51 kernel SLaK outperforms smaller-kernel models.

Table 6: Object detection and segmentation on MS COCO. Models are pre-trained on ImageNet-
1K and finetuned using Cascade Mask-RCNN. Methods marked with * are implemented by us.

Model Kernel Size APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

pre-trained for 120 epochs, finetuned for 1⇥ (12 epochs)
ConvNeXt-T (Liu et al., 2022b) 7-7-7-7 47.3 65.9 51.5 41.1 63.2 44.4
ConvNeXt-T (RepLKNET)⇤ (Ding et al., 2022) 31-29-27-13 47.8 66.7 52.0 41.4 63.9 44.7
SLaK-T 51-49-47-13 48.4 67.2 52.5 41.8 64.4 45.2

pre-trained for 300 epochs, finetuned for 3⇥ (36 epochs)
ConvNeXt-T (Liu et al., 2022b) 7-7-7-7 50.4 69.1 54.8 43.7 66.5 47.3
SLaK-T 51-49-47-13 51.3 70.0 55.7 44.3 67.2 48.1

6 ANALYSIS OF SLAK

6.1 EFFECTIVE RECEPTIVE FIELD (ERF)

Figure 3: Effective receptive field (ERF) of models with various kernel sizes. SLaK is not only
able to capture long-range dependence but also the local context features.

The concept of receptive field (Luo et al., 2016; Araujo et al., 2019) is important for deep CNNs:
anywhere in an input image outside the receptive field of a unit does not affect its output value.
Ding et al. (2022) scale kernels up to 31⇥31 and show enlarged ERF and also higher accuracy
over small-kernel models (He et al., 2016). As shown in the ERF theory (Luo et al., 2016), ERF is
proportion to O(k

p
n), where k and n refers to the kernel size and the network depth, respectively.

Therefore, the hypothesis behind the kernel decomposition in SLaK is that the two decomposed
M⇥N and N⇥M kernels can well maintain the ability of large kernels in terms of capturing large
ERF, while also focusing on fine-grained local features with the shorter edge (N).

To evaluate this hypothesis, we compare the ERFs captured by SLaK and RepLKNet. Following Kim
et al. (2021); Ding et al. (2022), we sample and resize 50 images from the validation set to 1024⇥1024,
and measure the contribution of the pixel on input images to the central point of the feature map
generated in the last layer. The contribution scores are further accumulated and projected to a
1024⇥1024 matrix, as visualized in Figure 3. In the left sub-figure, although the original ConvNeXt
already improves the kernel size to 7⇥7, its high-contribution pixels concentrate in the center of
the input. Even the 31⇥31 kernels used by RepLKNet are not sufficient for ConvNeXt to cover the
whole input. In comparison, high-contribution pixels of SLaK spread in a much larger ERF, and some
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parameters and FLOPs, it is no surprise to observe our network to initially sacrifice accuracy slightly
compared to the original RepLKNet at medium kernel sizes i.e. 31⇥31. However, as the convolution
size continues to increase, our method can scale kernel size up to 61⇥61 with improved performance.

Table 2: Test accuracy of ConvNeXt-T trained with various large kernel recipes on ImageNet-1K. All
the models are trained for 120 epochs.

Kernel Size Top-1 Acc #Params FLOPs Top-1 Acc #Params FLOPs Top-1 Acc #Params FLOPs

Decomposed Sparse groups Sparse groups, expand more width

7-7-7-7 81.0 29M 4.5G 80.0 17M 2.6G 81.1 29M 4.5G

31-29-37-13 81.3 30M 5.0G 80.4 18M 2.9G 81.5 30M 4.8G
51-49-47-13 81.5 31M 5.4G 80.5 18M 3.1G 81.6 30M 5.0G
61-59-57-13 81.4 31M 5.6G 80.4 19M 3.2G 81.5 31M 5.2G

“Use sparse groups, expand more width” significantly boosts the model capacity. Recently
proposed ConvNeXt (Liu et al., 2022b) revisits the principle introduced in ResNeXt (Xie et al.,
2017) that splits convolutional filters into small but more groups. Instead of using the standard group
convolution, ConvNeXt simply employs depthwise convolutions with an increased width to achieve
the goal of “use more groups, expand width”. In this paper, we attempt to extend this principle from
a sparsity-inspired perspective – “use sparse groups, expand more width”.

To be specific, we first replace the dense convolutions with sparse convolutions, where the sparse
kernels are randomly constructed based on the layer-wise sparsity ratio of SNIP (Lee et al., 2019)1

due to its strong performance on large-scale models (Liu et al., 2022a). After construction, we train
the sparse model with dynamic sparsity (Mocanu et al., 2018; Liu et al., 2021b), where the sparse
weights are dynamically adapted during training by pruning the weights with the lowest magnitude
and growing the same number of weights randomly. Doing so enables dynamic adaptation of sparse
weights, leading to better local features. As kernels are sparse throughout training, the corresponding
parameter count and training/inference FLOPs are only proportional to the dense models. See
Appendix B for the full details of dynamic sparsity. To evaluate, we sparsify the decomposed kernels
with 40% sparsity and report the performance as the “Sparse groups” column. We can observe in
the middle column of Table 2 that dynamic sparsity notably reduces more than 2.0 GFLOPs, despite
causing temporary performance degradation.

We next show that the above high efficiency of dynamic sparsity can be effectively transferred to
model scalability. Dynamic sparsity allows us to computation-friendly scale the model size up. For
example, using the same sparsity (40%), we can expand the model width by 1.3⇥ while keeping
the parameter count and FLOPs roughly the same as the dense model. This brings us significant
performance gains, increasing the performance from 81.3% to 81.6% with extreme 51⇥51 kernels.
Impressively, equipped with 61⇥61 kernels, our method outperforms the previous state of the
arts (Liu et al., 2022b; Ding et al., 2022) while saving 55% FLOPs.

Large Kernels Generalize Better than Small Kernels with Our Recipe. To demonstrate that
the benefits of large kernels, we also report the impact of each step for the small 7⇥7 kernel in
Table 2. We can clearly see that the performance consistently increases with kernel size, up to 51⇥51.
Applying each part of our proposed recipe to 7⇥7 kernels leads to either no gain or marginal gains
compared to our 51x51 kernels. This break-down experiment justifies our claim: large kernel is the
root of power, and our proposed recipe helps unleash such power from large kernels.

4.1 BUILDING THE SPARSE LARGE KERNEL NETWORK (SLAK)

So far, we have discovered our recipe which can successfully scale up kernel size to 51⇥51 without
backfiring performance. Built on this recipe, we next construct our own Sparse Large Kernel Network
(SLaK), a pure CNN architecture employed with extreme 51⇥51 kernels. SLaK is built based on
the architecture of ConvNeXt. The design of the stage compute ratio and the stem cell are inherited
from ConvNeXt. The number of blocks in each stage is [3, 3, 9, 3] for SLaK-T and [3, 3, 27, 3] for
SLaK-S/B. The stem cell is simply a convolution layer with 4⇥4 kernels and 4 strides.

We first directly increase the kernel size of ConvNeXt to [51, 49, 47, 13] for each stage, and replace
each M⇥M kernel with a combination of M⇥5 and 5⇥M kernels as illustrated in Figure 1. We find

1SNIP ratio is obtained by globally selecting the important weights across layers with the highest connection
sensitivity score |g � w|, where w and g is the network weight and gradient, respectively.
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Figure 2: Dynamic sparsity. Dynamic sparsity allows us to construct and train initially sparse neural
networks (sparse kernels) from scratch. During training, it dynamically adjusts the sparse weights by
pruning the least important weights and adding new. Such dynamic procedure gradually optimizes
the sparse kernels to a good pattern and hence encourages a more elaborate capture of local features.

some works start to revive the usage of large kernels in CNNs. Li et al. (2021) propose involution with
7⇥7 large kernels that uses distinct weights in the spatial extent while sharing weights across channels.
However, the performance improvement plateaus when further expanding the kernel size. Han et al.
(2021b) find that dynamic depth-wise convolution (7⇥7) performs on par with the local attention
mechanism if we substitute the latter with the former in Swin Transformer. Liu et al. (2022b) imitate
the design elements of Swin Transformer (Liu et al., 2021e) and design ConvNeXt employed with
7⇥7 kernels, surpassing the performance of the former. RepLKNet (Ding et al., 2022) for the first
time scales the kernel size to 31⇥31 by constructing a small kernel (e.g., 3⇥3 or 5⇥5) parallel to
it and achieves comparable performance to the Swin Transformer. A series of work (Romero et al.,
2021; 2022) of continuous convolutional kernels can be used on data of arbitrary resolutions, lengths
and dimensionalities. Lately, Chen et al. (2022) reveal large kernels to be feasible and beneficial for
3D networks too. Prior works have explored the idea of paralleling (Peng et al., 2017; Guo et al.,
2022a) or stacking (Szegedy et al., 2017) two complementary M⇥1 and 1⇥M kernels. However, they
limit the shorter edge to 1 and do not scale the kernel size beyond 51⇥51. Different from those prior
arts, we decompose a large kernel into two complementary non-square kernels (M⇥N and N⇥M),
improving the training stability and memory scalability of large convolutions kernels.

Dynamic Sparsity. A long-standing research topic, recent attempts on sparsity (Mocanu et al., 2018;
Liu et al., 2021b;c; Evci et al., 2020; Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019; Chen
et al., 2021) train intrinsically sparse neural networks from scratch using only a small proportion
of parameters and FLOPs (as illustrated in Figure 2). Dynamic sparsity enables training sparse
models from scratch, hence the training and inference FLOPs and memory requirements are only a
small fraction of the dense models. Different from post-training pruning (Han et al., 2015; Frankle
& Carbin, 2019), models built with dynamic sparsity can be trained from scratch to match their
dense counterparts without involving any pre-training or dense training. Dynamic sparsity stems
from Sparse Evolutionary Training (SET) (Mocanu et al., 2018; Liu et al., 2021b) which randomly
initializes the sparse connectivity between layers randomly and dynamically adjusts the sparse
connectivity via a parameter prune-and-grow scheme during the course of training. The parameter
prune-and-grow scheme allows the model’s sparse structure to gradually evolve, achieving better
performance than naively training a static sparse network (Liu et al., 2021c). In this paper, our target
is not to find sparse networks that can match the corresponding dense networks. Motivated by the
principle of ResNeXt (Xie et al., 2017; Liu et al., 2022b) – “use more groups, expand width”, we
instead attempt to leverage dynamic sparsity to scale neural architectures with extreme kernels.

3 FAILURES OF EXISTING APPROACHES TO GO BEYOND 31⇥31 KERNELS

We first study the performance of extreme kernel sizes larger than 31⇥31 using two existing large-
kernel techniques, ConvNeXt (Liu et al., 2022b) and RepLKNet (Ding et al., 2022). We take the
recently-developed ConvNeXt on ImageNet-1K as our benchmark to conduct this study. We adopt
the efficient large-kernel implementation developed by MegEngine (Meg, 2020) in this paper.

We follow recent works (Liu et al., 2022b; Bao et al., 2021; Liu et al., 2021e; Ding et al.,
2022; Touvron et al., 2021b) using Mixup (Zhang et al., 2017), Cutmix (Yun et al., 2019),
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Figure 1: Large depth-wise kernel (e.g., 51⇥51) paradigms of ConvNeXt, RepLKNet, and SLaK.
Dark blue squares refer to the dense weights in convolutional kernels. Light blue squares refer to the
sparse weights in convolutional kernels.

comparable results to Swin Transformer (Liu et al., 2021e). However, large kernels are notoriously
difficult to train. Even with the assistance of a parallel branch with small kernels, the performance of
RepLKNet starts to saturate as the kernel size continues increasing, compared to the scaling trend of
advanced ViTs such as Swin Transformer. Therefore, it remains mysterious whether we can exceed
the Transformer-based models by further scaling the kernel size beyond 31⇥31.

In this paper, we attempt to answer this research question by leveraging sparsity commonly observed
in the human visual system. Sparsity has been seen as one of the most important principles in the
primary visual cortex (V1) (Tong, 2003), where the incoming stimuli have been hypothesized to be
sparsely coded and selected (Desimone & Duncan, 1995; Olshausen & Field, 1997; Vinje & Gallant,
2000). We extensively study the trainability of large kernels and unveil three main observations: (i)

existing methods that either naively apply larger kernels (Liu et al., 2022b) or assist with structural
re-parameterization (Ding et al., 2022) fail to scale kernel sizes beyond 31⇥31; (ii) replacing one
large M⇥M kernel with two rectangular, parallel kernels (M⇥N and N⇥M, where N < M) can
smoothly scale the kernel size up to 61⇥61 with improved performance; (iii) constructing with sparse
groups while expanding width significantly boosts the performance.

Built upon these observations, we propose SLaK – Sparse Large Kernel Network – a new pure CNN
architecture equipped with an unprecedented kernel size of 51⇥51. Evaluated across a variety of tasks
including ImageNet classification (Deng et al., 2009), semantic segmentation on ADE20K (Zhou
et al., 2019), object detection on PASCAL VOC 2007 (Everingham et al., 2007), and object de-
tection/segmentation on COCO (Lin et al., 2014), SLaK performs better than or on par with CNN
pioneers RepLKNet and ConvNeXt (Liu et al., 2022b) as well as SOTA attention-based models e.g.,
Swin (Liu et al., 2021e) and Cswin (Dong et al., 2022) Transformers on ImageNet. Our analysis of
effective receptive field (ERF) shows that when plugged in the recently proposed ConvNeXt, our
method is able to cover a large ERF region than existing larger kernel paradigms.

2 RELATED WORK

Large Kernel in Attention. Originally introduced for Natural Language Processing (Vaswani
et al., 2017) and extended in Computer Vision by Dosovitskiy et al. (2021), self-attention can be
viewed as a global depth-wise kernel that enables each layer to have a global receptive field. Swin
Transformer (Liu et al., 2021e) is a ViTs variant that adopts local attention with a shifted window
manner. Compared with global attention, local attention (Ramachandran et al., 2019; Vaswani et al.,
2021; Chu et al., 2021; Liu et al., 2021d; Dong et al., 2022) can greatly improve the memory and
computation efficiency with appealing performance. Since the size of attention windows is at least 7, it
can be seen as an alternative class of large kernel. A recent work (Guo et al., 2022b) proposes a novel
large kernel attention module that uses stacked depthwise, small convolution, dilated convolution as
well as pointwise convolution to capture both local and global structure.

Large Kernel in Convolution. Large kernels in convolution date back to the 2010s (Krizhevsky
et al., 2012b; Szegedy et al., 2015; 2017), if not earlier, where large kernel sizes such as 7⇥7 and
11⇥11 are applied. Global Convolutional Network (GCNs) (Peng et al., 2017) enlarges the kernel
size to 15 by employing a combination of 1⇥M + M⇥1 and M⇥1 + 1⇥M convolutions. However, the
proposed method leads to performance degradation on ImageNet. The family of Inceptions (Szegedy
et al., 2016; 2017) allows for the utilization of varying convolutional kernel sizes to learn spatial
patterns at different scales. With the popularity of VGG (Simonyan & Zisserman, 2014), it has been
common over the past decade to use a stack of small kernels (1⇥1 or 3⇥3) to obtain a large receptive
field (He et al., 2016; Howard et al., 2017; Xie et al., 2017; Huang et al., 2017). Until very recently,
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Effective receptive field (ERF)

(1) Initialization: Constructing Sparce Convolution based on SNIP[2]

(2) Dynamic sparsity: Pruning (the lowest magnitude) and growing

[1] More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. ICLR, 2023.
[2] SNIP: Single-shot Network Pruning based on Connection Sensitivity. ICLR, 2019.
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Table 5: Object detection on PASCAL VOC 2007. Faster RCNN is equipped with various backbone
networks that are pre-trained for 120 epochs on ImageNet-1K. The pre-trained ConvNeXt-T is
obtained from its GitHub repository. FLOPs are based on input sizes of (1280, 800). Methods marked
with * are implemented by us.

Model Kernel Size mAP (%) (") #Param FLOPs

ResNet-50 (He et al., 2016) 3-3-3-3 74.0 - -
ResNet-101 (He et al., 2016) 3-3-3-3 74.3 - -
ConvNeXt-T (Liu et al., 2022b) 7-7-7-7 80.6 45M 208G
ConvNeXt-T (RepLKNet)⇤ (Ding et al., 2022) 31-29-27-13 81.3 55M 207G
SLaK-T 51-49-47-13 82.7 49M 205G

see an encouraging trend: the performance consistently improves with the increase of kernel size and
our 51⇥ 51 kernel SLaK outperforms smaller-kernel models.

Table 6: Object detection and segmentation on MS COCO. Models are pre-trained on ImageNet-
1K and finetuned using Cascade Mask-RCNN. Methods marked with * are implemented by us.

Model Kernel Size APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

pre-trained for 120 epochs, finetuned for 1⇥ (12 epochs)
ConvNeXt-T (Liu et al., 2022b) 7-7-7-7 47.3 65.9 51.5 41.1 63.2 44.4
ConvNeXt-T (RepLKNET)⇤ (Ding et al., 2022) 31-29-27-13 47.8 66.7 52.0 41.4 63.9 44.7
SLaK-T 51-49-47-13 48.4 67.2 52.5 41.8 64.4 45.2

pre-trained for 300 epochs, finetuned for 3⇥ (36 epochs)
ConvNeXt-T (Liu et al., 2022b) 7-7-7-7 50.4 69.1 54.8 43.7 66.5 47.3
SLaK-T 51-49-47-13 51.3 70.0 55.7 44.3 67.2 48.1

6 ANALYSIS OF SLAK

6.1 EFFECTIVE RECEPTIVE FIELD (ERF)

Figure 3: Effective receptive field (ERF) of models with various kernel sizes. SLaK is not only
able to capture long-range dependence but also the local context features.

The concept of receptive field (Luo et al., 2016; Araujo et al., 2019) is important for deep CNNs:
anywhere in an input image outside the receptive field of a unit does not affect its output value.
Ding et al. (2022) scale kernels up to 31⇥31 and show enlarged ERF and also higher accuracy
over small-kernel models (He et al., 2016). As shown in the ERF theory (Luo et al., 2016), ERF is
proportion to O(k

p
n), where k and n refers to the kernel size and the network depth, respectively.

Therefore, the hypothesis behind the kernel decomposition in SLaK is that the two decomposed
M⇥N and N⇥M kernels can well maintain the ability of large kernels in terms of capturing large
ERF, while also focusing on fine-grained local features with the shorter edge (N).

To evaluate this hypothesis, we compare the ERFs captured by SLaK and RepLKNet. Following Kim
et al. (2021); Ding et al. (2022), we sample and resize 50 images from the validation set to 1024⇥1024,
and measure the contribution of the pixel on input images to the central point of the feature map
generated in the last layer. The contribution scores are further accumulated and projected to a
1024⇥1024 matrix, as visualized in Figure 3. In the left sub-figure, although the original ConvNeXt
already improves the kernel size to 7⇥7, its high-contribution pixels concentrate in the center of
the input. Even the 31⇥31 kernels used by RepLKNet are not sufficient for ConvNeXt to cover the
whole input. In comparison, high-contribution pixels of SLaK spread in a much larger ERF, and some
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Large Kernels: InceptionNeXt

[1] InceptionNeXt: When Inception Meets ConvNeXt. CVPR, 2024.

• MetaNeXt: Fusing Token Mixer with Channel Mixer + PreNorm + ShortCut.

• Inception Kernels: Better performance and throughputs than Depth-wise Conv 7x7.

Algorithm 1 Inception Depthwise Convolution (PyTorch-
like Code)

import torch.nn as nn

class InceptionDWConv2d(nn.Module):

def __init__(self, in_channels,

square_kernel_size=3, band_kernel_size=11,

branch_ratio=1/8):

super().__init__()

gc = int(in_channels * branch_ratio) # channel

number of a convolution branch

self.dwconv_hw = nn.Conv2d(gc, gc,

square_kernel_size, padding=

square_kernel_size//2, groups=gc)

self.dwconv_w = nn.Conv2d(gc, gc, kernel_size

=(1, band_kernel_size), padding=(0,

band_kernel_size//2), groups=gc)

self.dwconv_h = nn.Conv2d(gc, gc, kernel_size

=(band_kernel_size, 1), padding=(

band_kernel_size//2, 0), groups=gc)

self.split_indexes = (gc, gc, gc, in_channels

- 3 * gc)

def forward(self, x):

# B, C, H, W = x.shape

x_hw, x_w, x_h, x_id = torch.split(x, self.

split_indexes, dim=1)

return torch.cat(

(self.dwconv_hw(x_hw),

self.dwconv_w(x_w),

self.dwconv_h(x_h),

x_id),

dim=1)

where X,X
0 2 RB⇥C⇥H⇥W with B, C, H and W denot-

ing batch size, channel number, height and width, respec-
tively. Then the output from the token mixer is normalized,

Y = Norm(X 0) (2)

After normalization [27, 1], the resulting features are
inputted into an MLP module consisting of two fully-
connected layers with an activation function sandwiched
between them, the same as feed-forward network in Trans-
former [63]. The two fully-connected layers can also be
implemented by 1⇥ 1 convolutions. Also, shortcut connec-
tion [20, 54] is adopted. This process can be expressed by

Y = ConvrC!C

1⇥1 {�[ConvC!rC

1⇥1 (Y )]}+X, (3)

where ConvCi!Co
k⇥k

means convolution with kernel size of
k ⇥ k, input channels of Ci and output channels of Co; r is
the expansion ratio and � denotes activation function.
Comparison to MetaFormer block. As shown in Fig-
ure 2, it can be found that MetaNeXt block shares simi-
lar modules with MetaFormer block [74], e.g. token mixer
and MLP. Nevertheless, a critical differentiation between
the two models lies in the number of shortcut connections
[20, 54]. MetaNeXt block implements a single shortcut
connection, whereas the MetaFormer block incorporates

two, one for the token mixer and the other for the MLP.
From this aspect, MetaNeXt block can be regarded as a re-
sult of merging two residual sub-blocks from MetaFormer,
thereby simplifying the overall architecture. As a result, the
MetaNeXt architecture exhibits a higher speed compared to
MetaFormer. However, this simpler design comes with a
limitation: the token mixer component in MetaNeXt can-
not be complicated (e.g., Attention) as shown in our exper-
iments (Table 3).
Instantiation to ConvNeXt. As shown in Figure 2, in Con-
vNeXt, the token mixer is simply implemented by a depth-
wise convolution,

X
0 = TokenMixer(X) = DWConvC!C

k⇥k
(X) (4)

where DWConvC!C

k⇥k
denotes depthwise convolution with

kernel size of k ⇥ k. In ConvNeXt, k is set as 7 by default.

3.2. Inception depthwise convolution

Formulation. As illustrated in Figure 1, conventional
depthwise convolution with large kernel size significantly
impedes model speed. Firstly, inspired by ShuffleNetV2
[40], we find processing partial channels is also enough for
single depthwise convolution layer as shown in our prelim-
inary experiments in Appendix A. Thus, we leave partial
channels unchanged and denote them as a branch of iden-
tity mapping. For the processing channels, we propose to
decompose the depthwise operations with Inception style
[56, 57, 55]. Inception [56] utilizes several branches of
small kernels (e.g. 3⇥3) and large kernels (e.g. 5⇥5). Sim-
ilarly, we adopt 3 ⇥ 3 as one of our branches but avoid the
large square kernels because of their slow practical speed.
Instead, large kernel kh ⇥ kw is decomposed as 1⇥ kw and
kh ⇥ 1 inspired by Inception v3 [57].

Specifically, for input X , we split it into four groups
along the channel dimension,

Xhw, Xw, Xh, Xid = Split(X)

= X:,:g, X:g:2g, X:2g:3g, X:3g:
(5)

where g is the channel numbers of convolution branches.
We can set a ratio rg to determine the branch channel num-
bers by g = rgC. Next, the splitting inputs are fed into
different parallel branches,

X
0
hw = DWConvg!g

ks⇥ks
g(Xhw),

X
0
w = DWConvg!g

1⇥kb
g(Xw),

X
0
h = DWConvg!g

kb⇥1g(Xh),

X
0
id = Xid.

(6)

where ks denotes the small square kernel size set as 3 by de-
fault; kb represents the band kernel size set as 11 by default.
Finally, the outputs from each branch are concatenated,

X
0 = Concat(X 0

hw, X
0
w, X

0
h, X

0
id). (7)

Algorithm 1 Inception Depthwise Convolution (PyTorch-
like Code)

import torch.nn as nn

class InceptionDWConv2d(nn.Module):

def __init__(self, in_channels,

square_kernel_size=3, band_kernel_size=11,

branch_ratio=1/8):

super().__init__()

gc = int(in_channels * branch_ratio) # channel

number of a convolution branch

self.dwconv_hw = nn.Conv2d(gc, gc,

square_kernel_size, padding=

square_kernel_size//2, groups=gc)

self.dwconv_w = nn.Conv2d(gc, gc, kernel_size

=(1, band_kernel_size), padding=(0,

band_kernel_size//2), groups=gc)

self.dwconv_h = nn.Conv2d(gc, gc, kernel_size

=(band_kernel_size, 1), padding=(

band_kernel_size//2, 0), groups=gc)

self.split_indexes = (gc, gc, gc, in_channels

- 3 * gc)

def forward(self, x):

# B, C, H, W = x.shape

x_hw, x_w, x_h, x_id = torch.split(x, self.

split_indexes, dim=1)

return torch.cat(

(self.dwconv_hw(x_hw),

self.dwconv_w(x_w),

self.dwconv_h(x_h),

x_id),

dim=1)

where X,X
0 2 RB⇥C⇥H⇥W with B, C, H and W denot-

ing batch size, channel number, height and width, respec-
tively. Then the output from the token mixer is normalized,

Y = Norm(X 0) (2)

After normalization [27, 1], the resulting features are
inputted into an MLP module consisting of two fully-
connected layers with an activation function sandwiched
between them, the same as feed-forward network in Trans-
former [63]. The two fully-connected layers can also be
implemented by 1⇥ 1 convolutions. Also, shortcut connec-
tion [20, 54] is adopted. This process can be expressed by

Y = ConvrC!C

1⇥1 {�[ConvC!rC

1⇥1 (Y )]}+X, (3)

where ConvCi!Co
k⇥k

means convolution with kernel size of
k ⇥ k, input channels of Ci and output channels of Co; r is
the expansion ratio and � denotes activation function.
Comparison to MetaFormer block. As shown in Fig-
ure 2, it can be found that MetaNeXt block shares simi-
lar modules with MetaFormer block [74], e.g. token mixer
and MLP. Nevertheless, a critical differentiation between
the two models lies in the number of shortcut connections
[20, 54]. MetaNeXt block implements a single shortcut
connection, whereas the MetaFormer block incorporates

two, one for the token mixer and the other for the MLP.
From this aspect, MetaNeXt block can be regarded as a re-
sult of merging two residual sub-blocks from MetaFormer,
thereby simplifying the overall architecture. As a result, the
MetaNeXt architecture exhibits a higher speed compared to
MetaFormer. However, this simpler design comes with a
limitation: the token mixer component in MetaNeXt can-
not be complicated (e.g., Attention) as shown in our exper-
iments (Table 3).
Instantiation to ConvNeXt. As shown in Figure 2, in Con-
vNeXt, the token mixer is simply implemented by a depth-
wise convolution,

X
0 = TokenMixer(X) = DWConvC!C

k⇥k
(X) (4)

where DWConvC!C

k⇥k
denotes depthwise convolution with

kernel size of k ⇥ k. In ConvNeXt, k is set as 7 by default.

3.2. Inception depthwise convolution

Formulation. As illustrated in Figure 1, conventional
depthwise convolution with large kernel size significantly
impedes model speed. Firstly, inspired by ShuffleNetV2
[40], we find processing partial channels is also enough for
single depthwise convolution layer as shown in our prelim-
inary experiments in Appendix A. Thus, we leave partial
channels unchanged and denote them as a branch of iden-
tity mapping. For the processing channels, we propose to
decompose the depthwise operations with Inception style
[56, 57, 55]. Inception [56] utilizes several branches of
small kernels (e.g. 3⇥3) and large kernels (e.g. 5⇥5). Sim-
ilarly, we adopt 3 ⇥ 3 as one of our branches but avoid the
large square kernels because of their slow practical speed.
Instead, large kernel kh ⇥ kw is decomposed as 1⇥ kw and
kh ⇥ 1 inspired by Inception v3 [57].

Specifically, for input X , we split it into four groups
along the channel dimension,

Xhw, Xw, Xh, Xid = Split(X)

= X:,:g, X:g:2g, X:2g:3g, X:3g:
(5)

where g is the channel numbers of convolution branches.
We can set a ratio rg to determine the branch channel num-
bers by g = rgC. Next, the splitting inputs are fed into
different parallel branches,

X
0
hw = DWConvg!g

ks⇥ks
g(Xhw),

X
0
w = DWConvg!g

1⇥kb
g(Xw),

X
0
h = DWConvg!g

kb⇥1g(Xh),

X
0
id = Xid.

(6)

where ks denotes the small square kernel size set as 3 by de-
fault; kb represents the band kernel size set as 11 by default.
Finally, the outputs from each branch are concatenated,

X
0 = Concat(X 0

hw, X
0
w, X

0
h, X

0
id). (7)

Algorithm 1 Inception Depthwise Convolution (PyTorch-
like Code)

import torch.nn as nn

class InceptionDWConv2d(nn.Module):

def __init__(self, in_channels,

square_kernel_size=3, band_kernel_size=11,

branch_ratio=1/8):

super().__init__()

gc = int(in_channels * branch_ratio) # channel

number of a convolution branch

self.dwconv_hw = nn.Conv2d(gc, gc,

square_kernel_size, padding=

square_kernel_size//2, groups=gc)

self.dwconv_w = nn.Conv2d(gc, gc, kernel_size

=(1, band_kernel_size), padding=(0,

band_kernel_size//2), groups=gc)

self.dwconv_h = nn.Conv2d(gc, gc, kernel_size

=(band_kernel_size, 1), padding=(

band_kernel_size//2, 0), groups=gc)

self.split_indexes = (gc, gc, gc, in_channels

- 3 * gc)

def forward(self, x):

# B, C, H, W = x.shape

x_hw, x_w, x_h, x_id = torch.split(x, self.

split_indexes, dim=1)

return torch.cat(

(self.dwconv_hw(x_hw),

self.dwconv_w(x_w),

self.dwconv_h(x_h),

x_id),

dim=1)

where X,X
0 2 RB⇥C⇥H⇥W with B, C, H and W denot-

ing batch size, channel number, height and width, respec-
tively. Then the output from the token mixer is normalized,

Y = Norm(X 0) (2)

After normalization [27, 1], the resulting features are
inputted into an MLP module consisting of two fully-
connected layers with an activation function sandwiched
between them, the same as feed-forward network in Trans-
former [63]. The two fully-connected layers can also be
implemented by 1⇥ 1 convolutions. Also, shortcut connec-
tion [20, 54] is adopted. This process can be expressed by

Y = ConvrC!C

1⇥1 {�[ConvC!rC

1⇥1 (Y )]}+X, (3)

where ConvCi!Co
k⇥k

means convolution with kernel size of
k ⇥ k, input channels of Ci and output channels of Co; r is
the expansion ratio and � denotes activation function.
Comparison to MetaFormer block. As shown in Fig-
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lar modules with MetaFormer block [74], e.g. token mixer
and MLP. Nevertheless, a critical differentiation between
the two models lies in the number of shortcut connections
[20, 54]. MetaNeXt block implements a single shortcut
connection, whereas the MetaFormer block incorporates

two, one for the token mixer and the other for the MLP.
From this aspect, MetaNeXt block can be regarded as a re-
sult of merging two residual sub-blocks from MetaFormer,
thereby simplifying the overall architecture. As a result, the
MetaNeXt architecture exhibits a higher speed compared to
MetaFormer. However, this simpler design comes with a
limitation: the token mixer component in MetaNeXt can-
not be complicated (e.g., Attention) as shown in our exper-
iments (Table 3).
Instantiation to ConvNeXt. As shown in Figure 2, in Con-
vNeXt, the token mixer is simply implemented by a depth-
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kernel size of k ⇥ k. In ConvNeXt, k is set as 7 by default.

3.2. Inception depthwise convolution

Formulation. As illustrated in Figure 1, conventional
depthwise convolution with large kernel size significantly
impedes model speed. Firstly, inspired by ShuffleNetV2
[40], we find processing partial channels is also enough for
single depthwise convolution layer as shown in our prelim-
inary experiments in Appendix A. Thus, we leave partial
channels unchanged and denote them as a branch of iden-
tity mapping. For the processing channels, we propose to
decompose the depthwise operations with Inception style
[56, 57, 55]. Inception [56] utilizes several branches of
small kernels (e.g. 3⇥3) and large kernels (e.g. 5⇥5). Sim-
ilarly, we adopt 3 ⇥ 3 as one of our branches but avoid the
large square kernels because of their slow practical speed.
Instead, large kernel kh ⇥ kw is decomposed as 1⇥ kw and
kh ⇥ 1 inspired by Inception v3 [57].

Specifically, for input X , we split it into four groups
along the channel dimension,

Xhw, Xw, Xh, Xid = Split(X)

= X:,:g, X:g:2g, X:2g:3g, X:3g:
(5)

where g is the channel numbers of convolution branches.
We can set a ratio rg to determine the branch channel num-
bers by g = rgC. Next, the splitting inputs are fed into
different parallel branches,
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0
hw = DWConvg!g

ks⇥ks
g(Xhw),

X
0
w = DWConvg!g

1⇥kb
g(Xw),

X
0
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kb⇥1g(Xh),
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0
id = Xid.

(6)

where ks denotes the small square kernel size set as 3 by de-
fault; kb represents the band kernel size set as 11 by default.
Finally, the outputs from each branch are concatenated,

X
0 = Concat(X 0

hw, X
0
w, X

0
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0
id). (7)

Model Mixing
Type

Image
(size)

Params
(M)

MACs
(G)

Throughput (img/second) Top-1
(%)Train Inference

DeiT-S [61] Attn 2242 22 4.6 1227 3781 79.8
T2T-ViT-14 [76] Attn 2242 22 4.8 – – 81.5
TNT-S [18] Attn 2242 24 5.2 – – 81.5
Swin-T [37] Attn 2242 29 4.5 564 1768 81.3
Focal-T [73] Attn 2242 29 4.9 – – 82.2
ResNet-50 [20, 69] Conv 2242 26 4.1 969 3149 78.4
RSB-ResNet-50 [20, 69] Conv 2242 26 4.1 969 3149 79.8
RegNetY-4G [46, 69] Conv 2242 21 4.0 670 2694 81.3
FocalNet-T [72] Conv 2242 29 4.5 – – 82.3
ConvNeXt-T [38] Conv 2242 29 4.5 575 2413 (1943) 82.1
InceptionNeXt-T (Ours) Conv 2242 28 4.2 901 (+57%) 2900 (+20%) 82.3 (+0.2)
T2T-ViT-19 [76] Attn 2242 39 8.5 – – 81.9
PVT-Medium [65] Attn 2242 44 6.7 – – 81.2
Swin-S [37] Attn 2242 50 8.7 359 1131 83.0
Focal-S [73] Attn 2242 51 9.1 – – 83.5
RSB-ResNet-101 [20, 69] Conv 2242 45 7.9 620 2057 81.3
RegNetY-8G [46, 69] Conv 2242 39 8.0 689 1326 82.1
FocalNet-S [72] Conv 2242 50 8.7 – – 83.5
ConvNeXt-S [38] Conv 2242 50 8.7 361 1535 (1275) 83.1
InceptionNeXt-S (Ours) Conv 2242 49 8.4 521 (+44%) 1750 (+14%) 83.5 (+0.4)
DeiT-B [61] Attn 2242 86 17.5 541 1608 81.8
T2T-ViT-24 [76] Attn 2242 64 13.8 – – 82.3
TNT-B [18] Attn 2242 66 14.1 – – 82.9
PVT-Large [65] Attn 2242 62 9.8 – – 81.7
Swin-B [37] Attn 2242 88 15.4 271 843 83.5
Focal-B [73] Attn 2242 90 16.0 – – 83.8
RSB-ResNet-152 [20, 69] Conv 2242 60 11.6 437 1457 81.8
RegNetY-16G [46, 69] Conv 2242 84 15.9 322 1100 82.2
RepLKNet-31B [13] Conv 2242 79 15.3 – – 83.5
FocalNet-B [72] Conv 2242 89 15.4 – – 83.9
ConvNeXt-B [38] Conv 2242 89 15.4 267 1122 (969) 83.8
InceptionNeXt-B (Ours) Conv 2242 87 14.9 375 (+40%) 1244 (+11%) 84.0 (+0.2)
ViT-Base/16 [16] Attn 3842 87 55.4 130 359 77.9
DeiT-B [61] Attn 3842 86 55.4 131 361 83.1
Swin-B [37] Attn 3842 88 47.1 104 296 84.5
RepLKNet-31B [13] Conv 3842 79 45.1 – – 84.8
ConvNeXt-B [38] Conv 3842 89 45.0 95 393 (337) 85.1
InceptionNeXt-B (Ours) Conv 3842 87 43.6 139 (+46%) 428 (+9%) 85.2 (+0.1)

Table 4: Performance of models trained on ImageNet-1K. The throughputs are measured on an A100 GPU with batch
size of 128 and full precision (FP32). Our environment is PyTorch 1.13.0 and NVIDIA CUDA 11.7.1. The better results
of “Channel First” and “Channel Last” memory layouts are reported. The numbers in gray color are reported by ConvNeXt
[38]. In our environment, ConvNeXt achieves much higher throughput than the values reported in the paper [38].

4. Experiment
4.1. Image classification

Setup. For the image classification task, ImageNet-1K
[11, 50] is one of the most commonly-used benchmarks,
which contains around 1.3 million images in the training

set and 50 thousand images in the validation set. To fairly
compared with the widely-used baselines, e.g.Swin [37]
and ConvNeXt [38], we mainly follow the training hyper-
parameters from DeiT [61] without distillation. Specifi-
cally, the models are trained by AdamW [39] optimizer with
a learning rate lr = 0.001 ⇥ batchsize/1024 (lr = 4e � 3
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Figure 1: Illustration of the sampling locations in 3 ⇥ 3
standard and deformable convolutions. (a) regular sam-
pling grid (green points) of standard convolution. (b) de-
formed sampling locations (dark blue points) with aug-
mented offsets (light blue arrows) in deformable convolu-
tion. (c)(d) are special cases of (b), showing that the de-
formable convolution generalizes various transformations
for scale, (anisotropic) aspect ratio and rotation.

mations. The first is deformable convolution. It adds 2D
offsets to the regular grid sampling locations in the stan-
dard convolution. It enables free form deformation of the
sampling grid. It is illustrated in Figure 1. The offsets
are learned from the preceding feature maps, via additional
convolutional layers. Thus, the deformation is conditioned
on the input features in a local, dense, and adaptive manner.

The second is deformable RoI pooling. It adds an offset
to each bin position in the regular bin partition of the previ-
ous RoI pooling [15, 7]. Similarly, the offsets are learned
from the preceding feature maps and the RoIs, enabling
adaptive part localization for objects with different shapes.

Both modules are light weight. They add small amount
of parameters and computation for the offset learning. They
can readily replace their plain counterparts in deep CNNs
and can be easily trained end-to-end with standard back-
propagation. The resulting CNNs are called deformable

convolutional networks, or deformable ConvNets.
Our approach shares similar high level spirit with spatial

transform networks [26] and deformable part models [11].
They all have internal transformation parameters and learn
such parameters purely from data. A key difference in
deformable ConvNets is that they deal with dense spatial
transformations in a simple, efficient, deep and end-to-end
manner. In Section 3.1, we discuss in details the relation of
our work to previous works and analyze the superiority of
deformable ConvNets.

2. Deformable Convolutional Networks

The feature maps and convolution in CNNs are 3D. Both
deformable convolution and RoI pooling modules operate
on the 2D spatial domain. The operation remains the same
across the channel dimension. Without loss of generality,
the modules are described in 2D here for notation clarity.
Extension to 3D is straightforward.

conv
offset field

input feature map

2N

output feature map

deformable convolu�on

offsets

Figure 2: Illustration of 3⇥ 3 deformable convolution.

2.1. Deformable Convolution

The 2D convolution consists of two steps: 1) sampling
using a regular grid R over the input feature map x; 2)
summation of sampled values weighted by w. The grid R
defines the receptive field size and dilation. For example,

R = {(�1,�1), (�1, 0), . . . , (0, 1), (1, 1)}

defines a 3⇥ 3 kernel with dilation 1.
For each location p0 on the output feature map y, we

have

y(p0) =
X

pn2R
w(pn) · x(p0 + pn), (1)

where pn enumerates the locations in R.
In deformable convolution, the regular grid R is aug-

mented with offsets {�pn|n = 1, ..., N}, where N = |R|.
Eq. (1) becomes

y(p0) =
X

pn2R
w(pn) · x(p0 + pn +�pn). (2)

Now, the sampling is on the irregular and offset locations
pn+�pn. As the offset �pn is typically fractional, Eq. (2)
is implemented via bilinear interpolation as

x(p) =
X

q

G(q,p) · x(q), (3)

where p denotes an arbitrary (fractional) location (p =
p0 + pn +�pn for Eq. (2)), q enumerates all integral spa-
tial locations in the feature map x, and G(·, ·) is the bilinear
interpolation kernel. Note that G is two dimensional. It is
separated into two one dimensional kernels as

G(q,p) = g(qx, px) · g(qy, py), (4)

where g(a, b) = max(0, 1 � |a � b|). Eq. (3) is fast to
compute as G(q,p) is non-zero only for a few qs.

• DCN.V3: Learnable offsets (V1) + Softmax-normalized modulation (V2) + Grouping.
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Abstract

Compared to the great progress of large-scale vision
transformers (ViTs) in recent years, large-scale models
based on convolutional neural networks (CNNs) are still
in an early state. This work presents a new large-scale
CNN-based foundation model, termed InternImage, which
can obtain the gain from increasing parameters and train-
ing data like ViTs. Different from the recent CNNs that focus
on large dense kernels, InternImage takes deformable con-
volution as the core operator, so that our model not only
has the large effective receptive field required for down-
stream tasks such as detection and segmentation, but also
has the adaptive spatial aggregation conditioned by input
and task information. As a result, the proposed InternIm-
age reduces the strict inductive bias of traditional CNNs
and makes it possible to learn stronger and more robust
patterns with large-scale parameters from massive data like
ViTs. The effectiveness of our model is proven on challeng-
ing benchmarks including ImageNet, COCO, and ADE20K.
It is worth mentioning that InternImage-H achieved a new
record 65.4 mAP on COCO test-dev and 62.9 mIoU on
ADE20K, outperforming current leading CNNs and ViTs.

1. Introduction
With the remarkable success of transformers in large-

scale language models [3–8], vision transformers (ViTs) [2,
9–15] have also swept the computer vision field and are
becoming the primary choice for the research and prac-
tice of large-scale vision foundation models. Some pio-
neers [16–20] have made attempts to extend ViTs to very
large models with over a billion parameters, beating convo-
lutional neural networks (CNNs) and significantly pushing
the performance bound for a wide range of computer vision

* equal contribution, B corresponding author (qiaoyu@pjlab.org.cn)

(b) local attention
✗ long-range dependence

✓ adaptive spatial aggregation
✓ computation/memory efficient

(d) dynamic sparse kernel (ours)
✓ long-range dependence

✓ adaptive spatial aggregation
✓ computation/memory efficient

(a) global attention
✓ long-range dependence

✓ adaptive spatial aggregation
✗ computation/memory efficient

(c) large kernel
✓ long-range dependence

✗ adaptive spatial aggregation
✓ computation/memory efficient

response pixels with fixed weightsquery pixels
response pixels with adaptive weights

Figure 1. Comparisons of different core operators. (a) shows
the global aggregation of multi-head self-attention (MHSA) [1],
whose computational and memory costs are expensive in down-
stream tasks that require high-resolution inputs. (b) limits the
range of MHSA into a local window [2] to reduce the cost. (c)
is a depth-wise convolution with very large kernels to model long-
range dependencies. (d) is a deformable convolution, which shares
similar favorable properties with MHSA and is efficient enough
for large-scale models. We start from it to build a large-scale CNN.

tasks, including basic classification, detection, and segmen-
tation. While these results suggest that CNNs are inferior
to ViTs in the era of massive parameters and data, we ar-
gue that CNN-based foundation models can also achieve
comparable or even better performance than ViTs when
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Compared to the great progress of large-scale vision
transformers (ViTs) in recent years, large-scale models
based on convolutional neural networks (CNNs) are still
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CNN-based foundation model, termed InternImage, which
can obtain the gain from increasing parameters and train-
ing data like ViTs. Different from the recent CNNs that focus
on large dense kernels, InternImage takes deformable con-
volution as the core operator, so that our model not only
has the large effective receptive field required for down-
stream tasks such as detection and segmentation, but also
has the adaptive spatial aggregation conditioned by input
and task information. As a result, the proposed InternIm-
age reduces the strict inductive bias of traditional CNNs
and makes it possible to learn stronger and more robust
patterns with large-scale parameters from massive data like
ViTs. The effectiveness of our model is proven on challeng-
ing benchmarks including ImageNet, COCO, and ADE20K.
It is worth mentioning that InternImage-H achieved a new
record 65.4 mAP on COCO test-dev and 62.9 mIoU on
ADE20K, outperforming current leading CNNs and ViTs.
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With the remarkable success of transformers in large-

scale language models [3–8], vision transformers (ViTs) [2,
9–15] have also swept the computer vision field and are
becoming the primary choice for the research and prac-
tice of large-scale vision foundation models. Some pio-
neers [16–20] have made attempts to extend ViTs to very
large models with over a billion parameters, beating convo-
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the performance bound for a wide range of computer vision
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the global aggregation of multi-head self-attention (MHSA) [1],
whose computational and memory costs are expensive in down-
stream tasks that require high-resolution inputs. (b) limits the
range of MHSA into a local window [2] to reduce the cost. (c)
is a depth-wise convolution with very large kernels to model long-
range dependencies. (d) is a deformable convolution, which shares
similar favorable properties with MHSA and is efficient enough
for large-scale models. We start from it to build a large-scale CNN.
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tation. While these results suggest that CNNs are inferior
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Self-Attention vs. Conv vs. DCN

method crop #params #FLOPs mIoU mIoU
size (SS) (MS)

Swin-T [2] 5122 60M 945G 44.5 45.8
ConvNeXt-T [21] 5122 60M 939G 46.0 46.7
SLaK-T [29] 5122 65M 936G 47.6 �
InternImage-T (ours) 5122 59M 944G 47.9 48.1
Swin-S [2] 5122 81M 1038G 47.6 49.5
ConvNeXt-S [21] 5122 82M 1027G 48.7 49.6
SLaK-S [29] 5122 91M 1028G 49.4 �
InternImage-S (ours) 5122 80M 1017G 50.1 50.9
Swin-B [2] 5122 121M 1188G 48.1 49.7
ConvNeXt-B [21] 5122 122M 1170G 49.1 49.9
RepLKNet-31B [22] 5122 112M 1170G 49.9 50.6
SLaK-B [29] 5122 135M 1172G 50.2 �
InternImage-B (ours) 5122 128M 1185G 50.8 51.3
Swin-L‡ [2] 6402 234M 2468G 52.1 53.5
RepLKNet-31L‡ [22] 6402 207M 2404G 52.4 52.7
ConvNeXt-L‡ [21] 6402 235M 2458G 53.2 53.7
ConvNeXt-XL‡ [21] 6402 391M 3335G 53.6 54.0
InternImage-L‡ (ours) 6402 256M 2526G 53.9 54.1
InternImage-XL‡ (ours) 6402 368M 3142G 55.0 55.3
SwinV2-G# [16] 8962 3.00B � � 59.9
InternImage-H# (ours) 8962 1.12B 3566G 59.9 60.3
BEiT-3# [17] 8962 1.90B � � 62.8
FD-SwinV2-G# [26] 8962 3.00B � � 61.4
InternImage-H# (ours) +
Mask2Former [80] 8962 1.31B 4635G 62.5 62.9

Table 5. Semantic segmentation performance on the ADE20K
validation set. The FLOPs are measured with 512⇥2048,
640⇥2560, or 896⇥896 inputs according to the crop size. “SS”
and “MS” means single-scale and multi-scale testing, respectively.

pre-trained classification weights and train our models with
UperNet [81] on ADE20K [82] for 160k iterations and
compare fairly with previous CNN-based and transformer-
based backbones. To further reach top performance, we arm
InternImage-H with more advanced Mask2Former [80], and
adopt the same training settings in [17, 69].

Results. As shown in Table 5, when using UperNet
[81] for semantic segmentation, our InternImage consis-
tently outperforms prior arts [2, 21, 22, 29]. For exam-
ple, with almost the same parameter numbers and FLOPs,
our InternImage-B reports 50.8 mIoU on the ADE20K val,
which is outstanding from the strong counterparts such
as ConvNeXt-B (50.8 vs. 49.1) and RepLKNet-31B (50.8
vs. 49.9). Furthermore, our InternImage-H yields 60.3 MS
mIoU, which is better than SwinV2-G [16], while the pa-
rameter number is much smaller (1.12B vs. 3.00B).

It is worth noting that, when using Mask2Former [80]
and multi-scale testing, our InternImage-H achieves the best
mIoU of 62.9, higher than the current best BEiT-3 [17] on
the ADE20K benchmark. These results demonstrate that
the CNN-based foundation model can also enjoy the divi-
dends of massive data and challenge the leading position of
transformer-based models.

Figure 4. Model parameters and GPU memory usage of shared
weights v.s unshared weights among convolution neurons. The
left vertical axis indicates the model parameters and the right one
indicates the GPU memory usage per image when the batch size
is 32 and the input image resolution is 224⇥ 224.

stage 1 stage 2

stage 4stage 3

Figure 5. Visualization of sampling locations for different
groups at different stages. The blue star indicates the query point
(on the left sheep), and the dots with different colors indicate the
sampling locations of different groups.

4.4. Ablation Study

Sharing weights among convolution neurons matters.
Large-scale models are sensitive to parameters and memory
cost of the core operator, due to hardware limitations. To
address this problem, we share weights among convolution
neurons of DCNv3. As shown in Fig. 4, we compare the pa-
rameters and memory cost of the models based on DCNv3
with shared or unshared weights. We see that the parame-
ters and memory cost of models with unshared weights are
much higher than the shared one, especially for the -H scale,
the ratio of saved parameters and GPU memory is 42.0%
and 84.2%, respectively. As shown in Table 6, we also ex-
amine that the two models at -T scale have similar top-1
accuracy on ImageNet (83.5 vs. 83.6) and APb on COCO
(47.2 vs. 47.4), even the model without shared weights has
66.1% more parameters.

Multi-group spatial aggregation brings stronger fea-

8

parameters, and to accommodate very large model widths,
we also change the group dimension C 0 to 32. The config-
urations are summarized in Table 1.

4. Experiment
We analyze and compare InternImage with the leading

CNNs and ViTs on representative vision tasks including im-
age classification, object detection, instance and semantic
segmentation. Besides the experiments in the main paper,
due to space constraints, more experimental setups and ab-
lation studies are presented in the supplementary material.

4.1. Image Classification
Settings. We evaluate the classification performance of

InternImage on ImageNet [31]. For fair comparisons, fol-
lowing common practices [2,10,21,58], InternImage-T/S/B
are trained on ImageNet-1K (⇠1.3 million) for 300 epochs,
and InternImage-L/XL are first trained on ImageNet-22K
(⇠14.2 million) for 90 epochs and then fine-tuned on
ImageNet-1K for 20 epochs. To further explore the ca-
pability of our model and match the large-scale private
data used in previous methods [16, 20, 59], we adopt M3I
Pre-training [60], a unified pre-training approach available
for both unlabeled and weakly-labeled data, to pre-train
InternImage-H on a 427 million joint dataset of public
Laion-400M [61], YFCC-15M [62], and CC12M [63] for
30 epochs, and then we fine-tune the model on ImageNet-
1K for 20 epochs.

Results. Table 2 shows the classification results of mod-
els with different scales. With similar parameters and com-
putational costs, our models are comparable or even su-
perior to the state-of-the-art transformer-based and CNN-
based models. For example, InternImage-T achieves 83.5%
top-1 accuracy, outperforming ConvNext-T [21] with a
clear margin of 1.4 points. InternImage-S/B keeps the
leading position and InternImage-B surpasses the hybrid-
ViT CoAtNet-2 [20] by 0.8 points. When pre-trained on
ImageNet-22K and the large-scale joint dataset, the top-1
accuracy of InternImage-XL and -H are boosted to 88.0%
and 89.6%, respectively, which is better than previous
CNNs [22,67] also trained with large-scale data, and closes
the gap with the state-of-the-art large-scale ViTs to about 1
point. This gap may be caused by the discrepancy between
large-scale inaccessible private data and the aforementioned
joint public data. These results show that our InternImage
not only has good performance on the common parameter
scale and the public training data, but also can effectively
extend to large-scale parameters and data.

4.2. Object Detection
Settings. We verify the detection performance of our

InternImage on the COCO benchmark [32], on top of

method type scale #params #FLOPs acc (%)
DeiT-S [58] T 2242 22M 5G 79.9
PVT-S [10] T 2242 25M 4G 79.8
Swin-T [2] T 2242 29M 5G 81.3
CoAtNet-0 [20] T 2242 25M 4G 81.6
CSwin-T [12] T 2242 23M 4G 82.7
PVTv2-B2 [11] T 2242 25M 4G 82.0
DeiT III-S [64] T 2242 22M 5G 81.4
SwinV2-T/8 [16] T 2562 28M 6G 81.8
Focal-T [65] T 2242 29M 5G 82.2
ConvNeXt-T [21] C 2242 29M 5G 82.1
ConvNeXt-T-dcls [66] C 2242 29M 5G 82.5
SLaK-T [29] C 2242 30M 5G 82.5
HorNet-T [43] C 2242 23M 4G 83.0
InternImage-T (ours) C 2242 30M 5G 83.5
PVT-L [10] T 2242 61M 10G 81.7
Swin-S [2] T 2242 50M 9G 83.0
CoAtNet-1 [20] T 2242 42M 8G 83.3
PVTv2-B4 [11] T 2242 63M 10G 83.6
SwinV2-S/8 [16] T 2562 50M 12G 83.7
ConvNeXt-S [21] C 2242 50M 9G 83.1
ConvNeXt-S-dcls [66] C 2242 50M 10G 83.7
SLaK-S [29] C 2242 55M 10G 83.8
HorNet-S [43] C 2242 50M 9G 84.0
InternImage-S (ours) C 2242 50M 8G 84.2
DeiT-B [58] T 2242 87M 18G 83.1
Swin-B [2] T 2242 88M 15G 83.5
CoAtNet-2 [20] T 2242 75M 16G 84.1
PVTv2-B5 [11] T 2242 82M 12G 83.8
DeiT III-B [64] T 2242 87M 18G 83.8
SwinV2-B/8 [16] T 2562 88M 20G 84.2
RepLKNet-31B [22] C 2242 79M 15G 83.5
ConvNeXt-B [21] C 2242 88M 15G 83.8
ConvNeXt-B-dcls [66] C 2242 89M 17G 84.1
SLaK-B [29] C 2242 95M 17G 84.0
HorNet-B [43] C 2242 88M 16G 84.3
InternImage-B (ours) C 2242 97M 16G 84.9
Swin-L‡ [2] T 3842 197M 104G 87.3
CoAtNet-3‡ [20] T 3842 168M 107G 87.6
CoAtNet-4‡ [20] T 3842 275M 190G 87.9
DeiT III-L‡ [64] T 3842 304M 191G 87.7
SwinV2-L/24‡ [16] T 3842 197M 115G 87.6
RepLKNet-31L‡ [22] C 3842 172M 96G 86.6
HorNet-L‡ [43] C 3842 202M 102G 87.7
ConvNeXt-L‡ [21] C 3842 198M 101G 87.5
ConvNeXt-XL‡ [21] C 3842 350M 179G 87.8
InternImage-L‡ (ours) C 3842 223M 108G 87.7
InternImage-XL‡ (ours) C 3842 335M 163G 88.0
ViT-G/14# [30] T 5182 1.84B 5160G 90.5
CoAtNet-6# [20] T 5122 1.47B 1521G 90.5
CoAtNet-7# [20] T 5122 2.44B 2586G 90.9
Florence-CoSwin-H# [59] T � 893M � 90.0
SwinV2-G# [16] T 6402 3.00B � 90.2
RepLKNet-XL# [22] C 3842 335M 129G 87.8
BiT-L-ResNet152x4# [67] C 4802 928M � 87.5
InternImage-H# (ours) C 2242 1.08B 188G 88.9
InternImage-H# (ours) C 6402 1.08B 1478G 89.6

Table 2. Image classification performance on the ImageNet val-
idation set. “type” refers to model type, where “T” and “C” de-
note transformer and CNN, respectively. “scale” is the input scale.
“acc” is the top-1 accuracy. “‡” indicates the model is pre-trained
on ImageNet-22K [31]. “#” indicates pretraining on extra large-
scale private dataset such as JFT-300M [68], FLD-900M [59], or
the joint public dataset in this work.

6

parameters, and to accommodate very large model widths,
we also change the group dimension C 0 to 32. The config-
urations are summarized in Table 1.

4. Experiment
We analyze and compare InternImage with the leading

CNNs and ViTs on representative vision tasks including im-
age classification, object detection, instance and semantic
segmentation. Besides the experiments in the main paper,
due to space constraints, more experimental setups and ab-
lation studies are presented in the supplementary material.

4.1. Image Classification
Settings. We evaluate the classification performance of

InternImage on ImageNet [31]. For fair comparisons, fol-
lowing common practices [2,10,21,58], InternImage-T/S/B
are trained on ImageNet-1K (⇠1.3 million) for 300 epochs,
and InternImage-L/XL are first trained on ImageNet-22K
(⇠14.2 million) for 90 epochs and then fine-tuned on
ImageNet-1K for 20 epochs. To further explore the ca-
pability of our model and match the large-scale private
data used in previous methods [16, 20, 59], we adopt M3I
Pre-training [60], a unified pre-training approach available
for both unlabeled and weakly-labeled data, to pre-train
InternImage-H on a 427 million joint dataset of public
Laion-400M [61], YFCC-15M [62], and CC12M [63] for
30 epochs, and then we fine-tune the model on ImageNet-
1K for 20 epochs.

Results. Table 2 shows the classification results of mod-
els with different scales. With similar parameters and com-
putational costs, our models are comparable or even su-
perior to the state-of-the-art transformer-based and CNN-
based models. For example, InternImage-T achieves 83.5%
top-1 accuracy, outperforming ConvNext-T [21] with a
clear margin of 1.4 points. InternImage-S/B keeps the
leading position and InternImage-B surpasses the hybrid-
ViT CoAtNet-2 [20] by 0.8 points. When pre-trained on
ImageNet-22K and the large-scale joint dataset, the top-1
accuracy of InternImage-XL and -H are boosted to 88.0%
and 89.6%, respectively, which is better than previous
CNNs [22,67] also trained with large-scale data, and closes
the gap with the state-of-the-art large-scale ViTs to about 1
point. This gap may be caused by the discrepancy between
large-scale inaccessible private data and the aforementioned
joint public data. These results show that our InternImage
not only has good performance on the common parameter
scale and the public training data, but also can effectively
extend to large-scale parameters and data.

4.2. Object Detection
Settings. We verify the detection performance of our

InternImage on the COCO benchmark [32], on top of

method type scale #params #FLOPs acc (%)
DeiT-S [58] T 2242 22M 5G 79.9
PVT-S [10] T 2242 25M 4G 79.8
Swin-T [2] T 2242 29M 5G 81.3
CoAtNet-0 [20] T 2242 25M 4G 81.6
CSwin-T [12] T 2242 23M 4G 82.7
PVTv2-B2 [11] T 2242 25M 4G 82.0
DeiT III-S [64] T 2242 22M 5G 81.4
SwinV2-T/8 [16] T 2562 28M 6G 81.8
Focal-T [65] T 2242 29M 5G 82.2
ConvNeXt-T [21] C 2242 29M 5G 82.1
ConvNeXt-T-dcls [66] C 2242 29M 5G 82.5
SLaK-T [29] C 2242 30M 5G 82.5
HorNet-T [43] C 2242 23M 4G 83.0
InternImage-T (ours) C 2242 30M 5G 83.5
PVT-L [10] T 2242 61M 10G 81.7
Swin-S [2] T 2242 50M 9G 83.0
CoAtNet-1 [20] T 2242 42M 8G 83.3
PVTv2-B4 [11] T 2242 63M 10G 83.6
SwinV2-S/8 [16] T 2562 50M 12G 83.7
ConvNeXt-S [21] C 2242 50M 9G 83.1
ConvNeXt-S-dcls [66] C 2242 50M 10G 83.7
SLaK-S [29] C 2242 55M 10G 83.8
HorNet-S [43] C 2242 50M 9G 84.0
InternImage-S (ours) C 2242 50M 8G 84.2
DeiT-B [58] T 2242 87M 18G 83.1
Swin-B [2] T 2242 88M 15G 83.5
CoAtNet-2 [20] T 2242 75M 16G 84.1
PVTv2-B5 [11] T 2242 82M 12G 83.8
DeiT III-B [64] T 2242 87M 18G 83.8
SwinV2-B/8 [16] T 2562 88M 20G 84.2
RepLKNet-31B [22] C 2242 79M 15G 83.5
ConvNeXt-B [21] C 2242 88M 15G 83.8
ConvNeXt-B-dcls [66] C 2242 89M 17G 84.1
SLaK-B [29] C 2242 95M 17G 84.0
HorNet-B [43] C 2242 88M 16G 84.3
InternImage-B (ours) C 2242 97M 16G 84.9
Swin-L‡ [2] T 3842 197M 104G 87.3
CoAtNet-3‡ [20] T 3842 168M 107G 87.6
CoAtNet-4‡ [20] T 3842 275M 190G 87.9
DeiT III-L‡ [64] T 3842 304M 191G 87.7
SwinV2-L/24‡ [16] T 3842 197M 115G 87.6
RepLKNet-31L‡ [22] C 3842 172M 96G 86.6
HorNet-L‡ [43] C 3842 202M 102G 87.7
ConvNeXt-L‡ [21] C 3842 198M 101G 87.5
ConvNeXt-XL‡ [21] C 3842 350M 179G 87.8
InternImage-L‡ (ours) C 3842 223M 108G 87.7
InternImage-XL‡ (ours) C 3842 335M 163G 88.0
ViT-G/14# [30] T 5182 1.84B 5160G 90.5
CoAtNet-6# [20] T 5122 1.47B 1521G 90.5
CoAtNet-7# [20] T 5122 2.44B 2586G 90.9
Florence-CoSwin-H# [59] T � 893M � 90.0
SwinV2-G# [16] T 6402 3.00B � 90.2
RepLKNet-XL# [22] C 3842 335M 129G 87.8
BiT-L-ResNet152x4# [67] C 4802 928M � 87.5
InternImage-H# (ours) C 2242 1.08B 188G 88.9
InternImage-H# (ours) C 6402 1.08B 1478G 89.6

Table 2. Image classification performance on the ImageNet val-
idation set. “type” refers to model type, where “T” and “C” de-
note transformer and CNN, respectively. “scale” is the input scale.
“acc” is the top-1 accuracy. “‡” indicates the model is pre-trained
on ImageNet-22K [31]. “#” indicates pretraining on extra large-
scale private dataset such as JFT-300M [68], FLD-900M [59], or
the joint public dataset in this work.

6

Scaling-up with efficient impl.DCN.V1:

DCN.V2:

DCN.V3:

stem

downsampling

stage !
basic block ×#!

downsampling

downsampling

stage $
basic block	×#"

stage &
basic block ×##

stage '
basic block ×#$

(×)×3

(/4×)/4×-"

(/8×)/8×-!

(/16×)/16×-#

(/32×)/32×-$

cls, det, seg, ...

stacking rules
(1) -% = 2%&"-"
(2) 3% = -%/-′
(3) #" = #! = #$
(4) #" ≤ ##

stem
3×3 conv, s2, p1
LN, GELU
3×3 conv, s2, p1
LN

downsampling
3×3 conv, s2, p1
LN

# %×

Δ7,9

LN

FFN

LN

DCNv3 (3% )

stage !

Figure 3. Overall Architecture of InternImage, where the core
operator is DCNv3, and the basic block composes of layer normal-
ization (LN) [24] and feed-forward network (FFN) [1] as trans-
formers, the stem and downsampling layers follows conventional
CNN’s designs, where “s2” and “p1” mean stride 2 and padding
1, respectively. Constrained by the stacking rules, only 4 hyper-
parameters (C1, C

0, L1, L3) can decide a model variant.

long-range features; and (2) for adaptive spatial aggrega-
tion, both the sampling offset �pk and modulation scalar
mk are learnable and conditioned by input x. So it can be
found that DCNv2 shares similar favorable properties with
MHSA, which motivated us to develop large-scale CNN-
based foundation models on the basis of this operator.

Extending DCNv2 for Vision Foundation Models. In
common practice, DCNv2 is usually used as an extension
to regular convolutions, loading pre-trained weights of reg-
ular convolutions and fine-tuning for better performance,
which is not exactly suitable for large-scale vision founda-
tion models that need to be trained from scratch. In this
work, to address this problem, we extend DCNv2 from as-
pects as follows:

(1) Sharing weights among convolutional neurons. Sim-
ilar to regular convolution, different convolutional neu-

rons1 in original DCNv2 have independent linear projection
weights, and thus its parameter and memory complexity
are linear with the total number of sampling points, which
significantly limits the efficiency of the model, especially
in large-scale models. To remedy this problem, we bor-
row the idea from the separable convolution [55] and de-
tach the original convolution weights wk into depth-wise
and point-wise parts, where the depth-wise part is respon-
sible by the original location-aware modulation scalar mk,
and the point-wise part is the shared projection weights w
among sampling points.

(2) Introducing multi-group mechanism. The multi-
group (head) design first appeared in group convolu-
tion [33], and it is widely used in MHSA [1] of transformers
and works with adaptive spatial aggregation to effectively
learn richer information from different representation sub-
spaces at different locations. Inspired by this, we split the
spatial aggregation process into G groups, each of which
has individual sampling offsets �pgk and modulation scale
mgk, and thus different groups on a single convolution layer
can have different spatial aggregation patterns, resulting in
stronger features for downstream tasks.

(3) Normalizing modulation scalars along sampling
points. The modulation scalars in the original DCNv2 are
element-wise normalized by the sigmoid function. There-
fore, each modulation scalar is in the range [0, 1], and the
sum of the modulation scalars of all sample points is not sta-
ble and varies from 0 to K. This leads to unstable gradients
in DCNv2 layers when training with large-scale parame-
ters and data. To alleviate the instability issues, we change
element-wise sigmoid normalization to softmax normaliza-
tion along sample points. In this way, the sum of the modu-
lation scalars is constrained to 1, which makes the training
process of models at different scales more stable.

Combining the aforementioned modifications, the ex-
tended DCNv2, marked as DCNv3, can be formulated as
Eqn. (2).

y(p0) =
GX

g=1

KX

k=1

wgmgkxg(p0 + pk +�pgk), (2)

where G denotes the total number of aggregation groups.
For the g-th group, wg 2 RC⇥C

0
denotes the location-

irrelevant projection weights of the group, where C 0=C/G
represents the group dimension. mgk2R denotes the mod-
ulation scalar of the k-th sampling point in the g-th group,
normalized by the softmax function along the dimension K.
xg 2 RC

0⇥H⇥W represents the sliced input feature map.
�pgk is the offset corresponding to the grid sampling loca-
tion pk in the g-th group.

In general, DCNv3, as an extension of the DCN series,
enjoys three merits as follows: (1) This operator made up

1A 3⇥3 regular convolution has 9 linear projection neurons.
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and more effective neural network architectures have been
proposed, such as VGG [34], GoogleNet [35], ResNet [36],
ResNeXt [37], EfficientNet [38, 39], etc. In addition to the
architectural design, more sophisticated convolution opera-
tions such as depth-wise convolution [40] and deformable
convolution [27, 28] are formulated. By considering the
advanced designs of transformers, modern CNNs showed
promising performance on the vision tasks by discover-
ing better components in macro/micro designs and intro-
ducing improved convolutions with long-range dependen-
cies [21, 41–43] or dynamic weights [44].

In recent years, a new line of vision foundation mod-
els focuses on transformer-based architecture. ViT [9] is
the most representative model, which achieves great suc-
cess in vision tasks thanks to global receptive fields and
dynamic spatial aggregation. However, global attention in
ViT suffers from expensive computational/memory com-
plexity, especially on large feature maps, which limits its
application in downstream tasks. To address this problem,
PVT [10, 11] and Linformer [45] performed global atten-
tion on the downsampled key and value maps, DAT [46]
employed deformable attention to sparsely sample informa-
tion from value maps, while HaloNet [47] and Swin trans-
former [2] developed local attention mechanisms and used
haloing and shift operations to transfer information among
adjacent local regions.

Large-scale models. Scaling up models is an important
strategy to improve feature representation quality, which
has been well-studied in the natural language processing
(NLP) domain [48]. Inspired by the success in the NLP
field, Zhai et al. [19] first extended ViT to 2 billion pa-
rameters. Liu et al. [16] enlarged the hierarchical-structure
Swin transformer to a deeper and wider model with 3 bil-
lion parameters. Some researchers developed large-scale
hybrid ViTs [20, 49] by combining the advantages of ViTs
and CNNs at different levels. Recently, BEiT-3 [17] further
explored stronger representations based on ViT with large-
scale parameters using multimodal pre-training. These
methods significantly raise the upper bound of basic vision
tasks. However, research on CNN-based large-scale models
has lagged behind transformer-based architectures in terms
of the total number of parameters and performance. Al-
though newly-proposed CNNs [21, 41–43] introduce long-
range dependencies by using convolutions with very large
kernels or recursive gated kernels, there is still a consider-
able gap with state-of-the-art ViTs. In this work, we aim
to develop a CNN-based foundation model that can extend
efficiently to a large scale comparable to ViT.

3. Proposed Method
To design a large-scale CNN-based foundation model,

we start with a flexible convolution variant, namely de-
formable convolution v2 (DCNv2) [28] and make some

tune-ups based on it to better suit the requirements of large-
scale foundation models. Then, we build the basic block
by combining the tuned convolution operator with advanced
block designs used in modern backbones [16, 19]. Finally,
we explore the stacking and scaling principles of DCN-
based blocks to build a large-scale convolutional model that
can learn strong representations from massive data.

3.1. Deformable Convolution v3
Convolution vs. MHSA. Previous works [21, 22, 50]

have extensively discussed the differences between CNNs
and ViTs. Before deciding on the core operator of InternIm-
age, we first summarize the main differences between regu-
lar convolution and MHSA.

(1) Long-range dependencies. Although it has long been
recognized that models with large effective receptive fields
(long-range dependencies) usually perform better on down-
stream vision tasks [51–53], the de-facto effective receptive
field of CNNs [34,36] stacked by 3⇥3 regular convolutions
is relatively small. Even with very deep models, the CNN-
based model still cannot acquire long-range dependencies
like ViTs, which limits its performance.

(2) Adaptive spatial aggregation. Compared to MHSA
whose weights are dynamically conditioned by the input,
regular convolution [54] is an operator with static weights
and strong inductive biases such as 2D locality, neigh-
borhood structure, translation equivalence, etc. With the
highly-inductive properties, models composed by regular
convolutions might converge faster and require less train-
ing data than ViTs, but it also restricts CNNs from learning
more general and robust patterns from web-scale data.

Revisiting DCNv2. A straightforward way to bridge the
gap between convolution and MHSA is to introduce long-
range dependencies and adaptive spatial aggregation into
regular convolutions. Let us start with DCNv2 [28], which
is a general variant of regular convolution. Given an input
x2RC⇥H⇥W and current pixel p0, DCNv2 can be formu-
lated as:

y(p0) =
KX

k=1

wkmkx(p0 + pk +�pk), (1)

where K represents the total number of sampling points,
and k enumerates the sampling point. wk 2 RC⇥C de-
notes the projection weights of the k-th sampling point,
and mk 2 R represents the modulation scalar of the k-
th sampling point, which is normalized by sigmoid func-
tion. pk denotes the k-th location of the pre-defined grid
sampling {(�1,�1), (�1, 0), ..., (0,+1), ..., (+1,+1)} as
in regular convolutions, and �pk is the offset correspond-
ing to the k-th grid sampling location. We see from the
equation that (1) for long-range dependencies, the sampling
offset �pk is flexible and able to interact with short- or
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(a) (b) (c) (d)

Figure 1: Illustration of the sampling locations in 3 ⇥ 3
standard and deformable convolutions. (a) regular sam-
pling grid (green points) of standard convolution. (b) de-
formed sampling locations (dark blue points) with aug-
mented offsets (light blue arrows) in deformable convolu-
tion. (c)(d) are special cases of (b), showing that the de-
formable convolution generalizes various transformations
for scale, (anisotropic) aspect ratio and rotation.

mations. The first is deformable convolution. It adds 2D
offsets to the regular grid sampling locations in the stan-
dard convolution. It enables free form deformation of the
sampling grid. It is illustrated in Figure 1. The offsets
are learned from the preceding feature maps, via additional
convolutional layers. Thus, the deformation is conditioned
on the input features in a local, dense, and adaptive manner.

The second is deformable RoI pooling. It adds an offset
to each bin position in the regular bin partition of the previ-
ous RoI pooling [15, 7]. Similarly, the offsets are learned
from the preceding feature maps and the RoIs, enabling
adaptive part localization for objects with different shapes.

Both modules are light weight. They add small amount
of parameters and computation for the offset learning. They
can readily replace their plain counterparts in deep CNNs
and can be easily trained end-to-end with standard back-
propagation. The resulting CNNs are called deformable

convolutional networks, or deformable ConvNets.
Our approach shares similar high level spirit with spatial

transform networks [26] and deformable part models [11].
They all have internal transformation parameters and learn
such parameters purely from data. A key difference in
deformable ConvNets is that they deal with dense spatial
transformations in a simple, efficient, deep and end-to-end
manner. In Section 3.1, we discuss in details the relation of
our work to previous works and analyze the superiority of
deformable ConvNets.

2. Deformable Convolutional Networks

The feature maps and convolution in CNNs are 3D. Both
deformable convolution and RoI pooling modules operate
on the 2D spatial domain. The operation remains the same
across the channel dimension. Without loss of generality,
the modules are described in 2D here for notation clarity.
Extension to 3D is straightforward.

Figure 2: Illustration of 3⇥ 3 deformable convolution.

2.1. Deformable Convolution

The 2D convolution consists of two steps: 1) sampling
using a regular grid R over the input feature map x; 2)
summation of sampled values weighted by w. The grid R
defines the receptive field size and dilation. For example,

R = {(�1,�1), (�1, 0), . . . , (0, 1), (1, 1)}

defines a 3⇥ 3 kernel with dilation 1.
For each location p0 on the output feature map y, we

have

y(p0) =
X

pn2R
w(pn) · x(p0 + pn), (1)

where pn enumerates the locations in R.
In deformable convolution, the regular grid R is aug-

mented with offsets {�pn|n = 1, ..., N}, where N = |R|.
Eq. (1) becomes

y(p0) =
X

pn2R
w(pn) · x(p0 + pn +�pn). (2)

Now, the sampling is on the irregular and offset locations
pn+�pn. As the offset �pn is typically fractional, Eq. (2)
is implemented via bilinear interpolation as

x(p) =
X

q

G(q,p) · x(q), (3)

where p denotes an arbitrary (fractional) location (p =
p0 + pn +�pn for Eq. (2)), q enumerates all integral spa-
tial locations in the feature map x, and G(·, ·) is the bilinear
interpolation kernel. Note that G is two dimensional. It is
separated into two one dimensional kernels as

G(q,p) = g(qx, px) · g(qy, py), (4)

where g(a, b) = max(0, 1 � |a � b|). Eq. (3) is fast to
compute as G(q,p) is non-zero only for a few qs.

Offsets Δp!, Regular grids p!, Modulation m", weights 𝑤



Kernel Designs: DCN.V4 (FlashInternImage)

[1] DCNv4: Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications. CVPR, 2024.

• DCN.V4: No Softmax normalization + Speed-up (reducing HRM as Flash-Attention).
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Operator Runtime (ms)
56⇥ 56⇥ 128 28⇥ 28⇥ 256 14⇥ 14⇥ 512 7⇥ 7⇥ 1024 14⇥ 14⇥ 768

Attention (torch) 30.8 / 19.3 3.35 / 2.12 0.539 / 0.448 0.446 / 0.121 0.779 / 0.654
FlashAttention-2 N/A / 2.46 N/A / 0.451 N/A / 0.123 N/A / 0.0901 N/A / 0.163
Window Attn (7⇥ 7) 4.05 / 1.46 2.07 / 0.770 1.08 / 0.422 0.577 / 0.239 1.58 / 0.604
DWConv (7⇥ 7, torch) 2.02 / 1.98 1.03 / 1.00 0.515 / 0.523 0.269 / 0.261 0.779 / 0.773
DWConv (7⇥ 7, cuDNN) 0.981 / 0.438 0.522 / 0.267 0.287 / 0.153 0.199 / 0.102 0.413 / 0.210
DCNv3 1.45 / 1.52 0.688 / 0.711 0.294 / 0.298 0.125 / 0.126 0.528 / 0.548
DCNv4 0.606 / 0.404 0.303 / 0.230 0.145 / 0.123 0.0730 / 0.0680 0.224 / 0.147

Table 2. Op-level benchmark on standard input shape with various downsample rates. FP32/FP16 results are reported when the
implementation is available. Our new DCNv4 can surpass all other commonly used operators under different input resolutions.

read the same sampling offset and aggregation weight val-
ues from GPU memory multiple times, which is critical for
a memory-bound operator. Processing multiple channels
within the same group on each output location with one
thread can eliminate these redundant memory read requests,
greatly reducing memory bandwidth usage. As the sampling
locations are the same, we can also only calculate the bilin-
ear interpolation coefficient used in DCN once. Specifically,
if each thread processes D

0 channels, the memory access
cost for reading offset and aggregation weight, as well as
the computation cost for calculating bilinear interpolation
coefficient, can both be reduced D

0 times.

Eliminating redundant memory instructions: In prac-
tice, solely reusing threads for multiple channels will not
see speed improvement. The reason is that when D

0 in-
creases, we create fewer threads and the workload of each
thread now increases D

0 times. This essentially reduces
the degree of parallelism for the CUDA kernel. Luckily,
the DCN kernel is now computationally lightweight as the
bilinear interpolation only needs to be performed once for
all D0 channels, and most of the workload is the memory
instructions reading input values from different channels.
When the memory layout is channel-last, and all D0 chan-
nel values are contiguous, we can leverage vectorized load:
for example, to read four 32-bit float values from memory,
instead of reading one 32-bit float value four times with
four instructions, we can use a single instruction to load a
128-bit packed value at once, thus reducing the number of
instructions and execution time of each thread. We can ap-
ply similar technique when writing the final results to GPU
memory, minimizing the memory access time and increasing
memory bandwidth utilization. Moreover, the modern half-
precision data format (float16/bfloat16) halves the bytes that
need to be loaded, which means the memory efficiency can
be twice as much under the same memory bandwidth when
using the half-precision format. However, we do not see
speed improvement with half-precision data in the original
DCNv3 implementation, possibly due to too much overhead
on data access and computation, while in our new implemen-
tation, the speedup is significant. It is worth noting that the

aforementioned optimization techniques can also be applied
to DCNv1/v2 and deformable attention [48], as they share a
similar performance bottleneck and issue.

Micro design in DCN module: DCNv3 module intro-
duces multiple micro designs; as the core kernel is optimized,
their impact on the speed becomes non-negligible. We iden-
tify two points in DCNv3 designs that could be further op-
timized: first, after removing the softmax and transforming
the modulation scalar into dynamic aggregation weights as
mentioned in the previous paragraph. The linear layers for
computing offset and dynamic weights can actually be com-
bined into one linear layer. This reduces network fragmenta-
tion and eliminates extra overheads, such as kernel launching
and synchronization, enhancing run-time efficiency on the
GPU; second, in the original DCNv3 module design, a com-
plex sub-network that consists of depthwise 3⇥3 conv, layer
normalization (LN), GELU, and linear layer is used to com-
pute offsets and dynamic weights. Following the design in
Xception [6], we remove the additional LN-GELU layers
and use the original separable convolution structure, further
reducing running time. We empirically find that if latency
is a higher priority, the depthwise convolution can also be
removed with only a minor performance sacrifice.

4. Experiments
In this section, we verify the effectiveness of our proposed
DCNv4 module from both speed as well as performance
perspective. We first benchmark the operator-level speed
and integrate DCNv4 into the backbone model to test the
system-level performance further. All speed test results are
obtained with an NVIDIA A100 80G SXM GPU. Due to
the space limit, we include additional experimental results
and implementation details, including other hyperparameter
settings and hardware/software environment, in supp.

4.1. Speed Benchmark for Operators
Settings: We conduct the op-level benchmark by solely
measuring the running time of several representative opera-
tors building state-of-the-art vision backbone models, includ-
ing full attention [35] implemented with PyTorch as well as
the advanced FlashAttention-2 [8] implementation, window-
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Model 5th EP 10th Ep 20th Ep 50th Ep 300th Ep
ConvNeXt 29.9 53.5 66.1 74.8 83.8
ConvNeXt 8.5 25.3 51.1 69.1 81.6
+ softmax (-21.4) (-28.2) (-15.0) (-5.7) (-2.2)

Table 1. ImageNet-1K accuracy at different training epochs.
Adding softmax normalization on the convolution weights signifi-
cantly affects the convergence speed and the final performance for
the ConvNeXt model.

ods [4, 19, 21, 22, 43, 45]. DynamicConv [40] and dynamic-
DWNet [13] augment depthwise convolutions (DWConv)
by incorporating dynamic weights, thereby enabling the use
of instance-specific weights that adapt dynamically. For
non-grid structured data, sparse operators [34, 37, 42] utilize
dynamic weights obtained via bilinear interpolation or in a
parametric way.
Memory access cost (MAC) in vision backbones: As
underscored in previous studies [18, 27], FLOPs, although
a frequently used metric to measure model complexity, do
not accurately represent the model’s speed or latency. In
practical scenarios, the running speed of a model is influ-
enced by multiple factors, not just FLOPs. Memory Access
Costs (MAC) play a particularly significant role in this con-
text. [27]. Flash-Attention [9], by reducing the number of
accesses to High Bandwidth Memory (HBM), achieves a
significantly faster speed in practice despite having higher
FLOPs compared to vanilla attention. Although DCN opera-
tors do not exhibit a disadvantage in terms of FLOPs, their
latency is considerably longer compared to DW-Conv, under
the same FLOPs budget, predominantly due to substantial
memory access costs. In this work, we conduct a thorough
analysis and optimization of the memory access costs asso-
ciated with the DCN operators, significantly accelerating the
DCN’s running speed.

3. Method
3.1. Rethinking the Dynamic Property in De-

formable Convolution
Revisiting DCNv3: Given an input x 2 RH⇥W⇥C with
height H , width W and channel C, the DCNv3 operation
with K points is defined in Eq. (2) for each point p0:

y
g
=

KX

k=1

mgkxg(p0 + pk +�pgk), (1)

y = concat([y1, y2, ..., y
G
], axis=-1), (2)

where G denotes the number of spatial aggregation groups.
For the g-th group, xg,yg 2 RH⇥W⇥C

0
represents the

sliced input/output feature map with C
0=C/G represents

the group dimension; mgk 2 R denotes the spatial aggrega-
tion weights (also known as modulation scalar) of the k-th
sampling point in the g-th group, conditioned on the input
x and normalized by the softmax function along the dimen-
sion K; pk denotes the k-th location of the pre-defined grid

query pixels value range (0, 1) (−∞, +∞)response pixels

(a) Attention

Window: Share/Fixed
Weights: Dynamic
Value Range: Bounded

(b) DCNv3

Window: Dedicated/Adaptive
Weights: Dynamic
Value Range: Bounded  

(c) Convolution

Window: Dedicated/Fixed
Weights: Static
Value Range: Unbounded

(d) DCNv4

Window: Dedicated/Adaptive
Weights: Dynamic
Value Range: Unbounded

Figure 2. Comparisons of core operators in spatial aggregation
for query pixels on different locations within the same channel.
(a) Attention and (b) DCNv3 use bounded (range from 0 ⇠ 1)
dynamic weights to aggregate spatial features, while the window
(sampling point set) for attention is the same, and DCNv3 uses a
dedicated window for each location. (c) Convolution has a more
flexible unbounded value range for aggregation weights and uses
a dedicated sliding window for each location, but the window
shape and aggregation weights are input-independent. (d) DCNv4
combines their advantages, using an adaptive aggregation window
and dynamic aggregation weights with an unbounded value range.

sampling {(�1,�1), (�1, 0), ..., (0,+1), ..., (+1,+1)} as
in regular convolutions and �pgk is the offset corresponding
to the grid sampling location pk in the g-th group. A 1⇥ 1
point-wise convolution on x and y can be applied before and
after the DCNv3 operator to enhance the model’s expressive
power, following separable convolution [6]. DCNv3 is a
combination of convolution and attention: on the one hand,
it processes the input data in a sliding window manner, which
follows convolution and inherent its inductive bias; on the
other hand, the sampling offset �p and spatial aggregation
weight m are dynamically predicted from the input feature,
showing its dynamic property and making it more like an
attention mechanism. We compare different operators where
each has its own property, as illustrated in Fig. 2

Softmax normalization: A key difference between convo-
lution and DCNv3 is that DCNv3 normalizes m, the spatial
aggregation weights, with a softmax function, following the
convention of scaled dot-product self-attention. Conversely,
convolution does not employ softmax over its weights and
still works well. The reason why attention needs a softmax
is straightforward: scaled dot-product self-attention with
Q,K, V 2 RN⇥d is defined with a formulation:

softmax(
1p
d
QK

>)V, (3)

where N is the number of points in the same attention win-
dow (can be either global [12] or local [25]), d is the hidden
dimension, Q,K, V are the query, key, and value matrices
computed from the input. Softmax operation is required in
Eq. (3) for attention; without softmax, K>

V 2 Rd⇥d can
be calculated first, and it degrades to a linear projection for
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Using Softmax in DWConv7×7 degenerating performance

ImageNet-1K Classification

Model Size Scale Acc Throughput
Swin-T 29M 2242 81.3 1989 / 3619
ConvNeXt-T 29M 2242 82.1 2485 / 4305
InternImage-T 30M 2242 83.5 1409 / 1746

FlashInternImage-T 30M 2242 83.6 2316 / 3154
(+64%/+ 80%)

Swin-S 50M 2242 83.0 1167/2000
ConvNeXt-S 50M 2242 83.1 1645/2538
InternImage-S 50M 2242 84.2 1044/1321
FlashInternImage-S 50M 2242 84.4 1625 / 2396
Swin-B 88M 2242 83.5 934 / 1741
ConvNeXt-B 89M 2242 83.8 1241 / 1888
InternImage-B 97M 2242 84.9 779 / 1030

FlashInternImage-B 97M 2242 84.9 1174 / 1816
(+51%/+ 76%)

Swin-L 197M 3842 87.3 206 / 301
ConvNeXt-L 198M 3842 87.5 252 / 436
InternImage-L 223M 3842 87.7 158 / 214
ConvNeXt-XL 350M 3842 87.8 170 / 299
InternImage-XL 335M 3842 88.0 125 / 174

FlashInternImage-L 223M 3842 88.1 248 / 401
(+57%/+ 87%)

Table 4. Image classification performance on ImageNet-1K. We
show relative speedup between FlashInternImage w/ DCNv4 and
its InternImage counterparts. DCNv4 significantly improves the
speed while shows state-of-the-art performance.

4.3. Downstream Tasks with High-Resolution Input
We further evaluate the performance of DCNv4 on represen-
tative downstream perception tasks with high-resolution in-
put, including instance segmentation, semantic segmentation
and 3D object detection. We keep all implementation de-
tails the same as InternImage and only change the backbone
model to FlashInternImage for a fair comparison. The back-
bone models are initialized from the ImageNet pretrained
weights when training the downstream models.

Instance Segmentation: We train FlashInternImage with
two representative instance segmentation frameworks, Mask
R-CNN [15] and Cascade Mask-RCNN [2], on COCO
dataset [23] at 1⇥ (12 epochs) and 3⇥ (36 epochs) train-
ing schedules. The results are shown in Tab. 5. We also
report FPS with batch size 16 in FP32/FP16 data format.
FlashInternImage shows superior results on all model scales
and training schedules, achieving a higher speed-accuracy
tradeoff. For example, FlashInternImage-T/S surpasses all
other models with the same scale and is on par with a larger
InternImage-S/B while being 80%� 90% faster.

Semantic Segmentation: We train FlashInternImage with
UperNet [41] on ADE20K [46] dataset for 160K iterations.
We can draw a similar conclusion as instance segmentation
from the results in Tab. 6, with FPS reported with batch
size 16 in FP32/FP16. FlashInternImage w/ DCNv4 can

Model #param FPS
Mask R-CNN

1⇥ 3⇥+MS
APb APm APb APm

Swin-T 48M 66 / 106 42.7 39.3 46.0 41.6
ConvNeXt-T 48M 78 / 113 44.2 40.1 46.2 41.7
InternImage-T 49M 54 / 69 47.2 42.5 49.1 43.7
FlashInternImage-T 49M 72 / 102 48.0 43.1 49.5 44.0
Swin-S 69M 45 / 77 44.8 40.9 48.2 43.2
ConvNeXt-S 70M 54 / 83 45.4 41.8 47.9 42.9
InternImage-S 69M 44 / 56 47.8 43.3 49.7 44.5
FlashInternImage-S 69M 57 / 83 49.2 44.0 50.5 44.9
Swin-B 107M 33 / 59 46.9 42.3 48.6 43.3
ConvNeXt-B 108M 43 / 70 47.0 42.7 48.5 43.5
InternImage-B 115M 33 / 43 48.8 44.0 50.3 44.8
FlashInternImage-B 115M 44 / 67 50.1 44.5 50.6 45.4

Model #param FPS
Cascade Mask R-CNN

1⇥ 3⇥+MS
APb APm APb APm

Swin-L 253M 20 / 26 51.8 44.9 53.9 46.7
ConvNeXt-L 255M 26 / 40 53.5 46.4 54.8 47.6
InternImage-L 277M 20 / 26 54.9 47.7 56.1 48.5
ConvNeXt-XL 407M 21 / 32 53.6 46.5 55.2 47.7
InternImage-XL 387M 16 / 23 55.3 48.1 56.2 48.8
FlashInternImage-L 277M 26 / 39 55.6 48.2 56.7 48.9

Table 5. Object detection and instance segmentation perfor-
mance on COCO val2017. APb and APm denotes box AP and
mask AP, respectively. “MS” means multi-scale training. FlashIn-
ternImage w/ DCNv4 models converge faster, clearly outperform
other baselines with 1⇥ training schedule, and still maintain a
leading position when training 3⇥ longer while being significantly
faster than InternImage.

achieve significantly faster speed and further improve the
performance of InternImage across different model scales,
resulting in a new state-of-the-art.

3D Detection: We further test DCNv4 on the camera-
based 3D object detection task in the autonomous driving
scenario, We train BEVFormer v2 [43], a state-of-the-art
multi-camera 3D object detector, with FlashInternImage-
Small and Base backbone models on the nuScenes dataset
for 24 epochs. We report results on the nuScenes test set in
Tab. 7 with FPS for each model. We note that the header
parts, such as the BEV encoder and object decoder in BEV-
Former v2, are underoptimized and take more than 50% of
the running time (and even more with a faster backbone);
thus, we also report the FPS for the backbone for a clearer
illustration. Our results show that when only considering
the backbone, FlashInternImage can be twice or even three
times faster than the InternImage backbone with an on-par
performance, greatly increasing the model efficiency.

4.4. DCNv4 as a Universal Operator
Drop-in replacement in other vision backbones : We
verify whether DCNv4 can still work well in architectures de-
signed with other operators, such as ConvNeXt and ViT. To
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show relative speedup between FlashInternImage w/ DCNv4 and
its InternImage counterparts. DCNv4 significantly improves the
speed while shows state-of-the-art performance.

4.3. Downstream Tasks with High-Resolution Input
We further evaluate the performance of DCNv4 on represen-
tative downstream perception tasks with high-resolution in-
put, including instance segmentation, semantic segmentation
and 3D object detection. We keep all implementation de-
tails the same as InternImage and only change the backbone
model to FlashInternImage for a fair comparison. The back-
bone models are initialized from the ImageNet pretrained
weights when training the downstream models.

Instance Segmentation: We train FlashInternImage with
two representative instance segmentation frameworks, Mask
R-CNN [15] and Cascade Mask-RCNN [2], on COCO
dataset [23] at 1⇥ (12 epochs) and 3⇥ (36 epochs) train-
ing schedules. The results are shown in Tab. 5. We also
report FPS with batch size 16 in FP32/FP16 data format.
FlashInternImage shows superior results on all model scales
and training schedules, achieving a higher speed-accuracy
tradeoff. For example, FlashInternImage-T/S surpasses all
other models with the same scale and is on par with a larger
InternImage-S/B while being 80%� 90% faster.

Semantic Segmentation: We train FlashInternImage with
UperNet [41] on ADE20K [46] dataset for 160K iterations.
We can draw a similar conclusion as instance segmentation
from the results in Tab. 6, with FPS reported with batch
size 16 in FP32/FP16. FlashInternImage w/ DCNv4 can
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Table 5. Object detection and instance segmentation perfor-
mance on COCO val2017. APb and APm denotes box AP and
mask AP, respectively. “MS” means multi-scale training. FlashIn-
ternImage w/ DCNv4 models converge faster, clearly outperform
other baselines with 1⇥ training schedule, and still maintain a
leading position when training 3⇥ longer while being significantly
faster than InternImage.

achieve significantly faster speed and further improve the
performance of InternImage across different model scales,
resulting in a new state-of-the-art.

3D Detection: We further test DCNv4 on the camera-
based 3D object detection task in the autonomous driving
scenario, We train BEVFormer v2 [43], a state-of-the-art
multi-camera 3D object detector, with FlashInternImage-
Small and Base backbone models on the nuScenes dataset
for 24 epochs. We report results on the nuScenes test set in
Tab. 7 with FPS for each model. We note that the header
parts, such as the BEV encoder and object decoder in BEV-
Former v2, are underoptimized and take more than 50% of
the running time (and even more with a faster backbone);
thus, we also report the FPS for the backbone for a clearer
illustration. Our results show that when only considering
the backbone, FlashInternImage can be twice or even three
times faster than the InternImage backbone with an on-par
performance, greatly increasing the model efficiency.

4.4. DCNv4 as a Universal Operator
Drop-in replacement in other vision backbones : We
verify whether DCNv4 can still work well in architectures de-
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Fig. 2. Decomposition diagram of large-kernel convolution. A standard
convolution can be decomposed into three parts: a depth-wise convo-
lution (DW-Conv), a depth-wise dilation convolution (DW-D-Conv), and
a pointwise convolution (1⇥1 Conv). The colored grids represent the
location of convolution kernel and the yellow grid means the center point.
The diagram shows that a 13⇥13 convolution is decomposed into a
5⇥5 depth-wise convolution, a 5⇥5 depth-wise dilation convolution with
dilation rate 3, and a pointwise convolution. Note: zero paddings are
omitted in the above figure.

the importance of different parts. To do so, we should learn the
relationship between different features.

There are two well-known methods to build relationship
between different parts. The first one is adopting self-attention
mechanism [13], [44], [48], [49] to capture long-range dependence.
There are three obvious shortcomings for self-attention applied in
computer vision which have been listed in Sec. 2.2. The second
one is to use large kernel convolution [30], [75], [76], [77] to build
relevance and produce attention map. There are still obvious cons
in this way. Large-kernel convolution brings a huge amount of
computational overhead and parameters.

To overcome above listed cons and make use of the pros of
self-attention and large kernel convolution, we propose to decom-
pose a large kernel convolution operation to capture long-range
relationship. As shown in Fig. 2, a large kernel convolution can be
divided into three components: a spatial local convolution (depth-
wise convolution), a spatial long-range convolution (depth-wise
dilation convolution), and a channel convolution (1⇥1 convolution).
Specifically. we can decompose a K ⇥ K convolution into a
dK

d
e ⇥ dK

d
e depth-wise dilation convolution with dilation d, a

(2d�1)⇥(2d�1) depth-wise convolution and a 1⇥1 convolution.
Through the above decomposition, we can capture long-range
relationship with slight computational cost and parameters. After
obtaining long-range relationship, we can estimate the importance
of a point and generate attention map. As demonstrated in Fig. 3(a),
the LKA module can be written as

Attention = Conv1⇥1(DW-D-Conv(DW-Conv(F))), (1)
Output = Attention⌦ F. (2)

Here, F 2 RC⇥H⇥W is the input feature. Attention 2
RC⇥H⇥W denotes attention map. The value in attention map
indicates the importance of each feature. ⌦ means element-wise
product. Different from common attention methods, LKA dose
not require an additional normalization function like sigmoid and
softmax, which is demonstrated in Tab. 3. We also believe the
key characteristics of attention methods is adaptively adjusting
output based on input feature, but not the normalized attention map.
As shown in Tab. 1, our proposed LKA combines the advantages
of convolution and self-attention. It takes the local contextual
information, large receptive field, linear complexity and dynamic
process into consideration. Furthermore, LKA not only achieves
the adaptability in the spatial dimension but also the adaptability in
the channel dimension. It worth noting that different channels often
represent different objects in deep neural networks [43], [65] and

TABLE 1
Desirable properties belonging to convolution, self-attention and LKA.

Properties Convolution Self-Attention LKA

Local Receptive Field 3 7 3
Long-range Dependence 7 3 3
Spatial Adaptability 7 3 3
Channel Adaptability 7 7 3
Computational complexity O(n) O(n2) O(n)

TABLE 2
Number of parameters for different forms of a 21⇥ 21 convolution. For
instance, when the number of channels C = 32, standard convolution
and MobileNet decomposition use 133⇥ and 4.5⇥ more parameters

than our decomposition respectively.

Standard Decomposition Type
Convolution MobileNet [6] Ours

C=32 451,584 15,136 3,392
C=64 1,806,336 32,320 8,832
C=128 7,225,344 72,832 25,856
C=256 28,901,376 178,432 84,480
C=512 115,605,504 487,936 300,032

adaptability in the channel dimension is also important for visual
tasks.

3.2 Visual Attention Network (VAN)
Our VAN has a simple hierarchical structure, i.e., a sequence of
four stages with decreasing output spatial resolution, i.e.,

H

4 ⇥ W

4 ,
H

8 ⇥W

8 , H

16⇥
W

16 and H

32⇥
W

32 respectively. Here, H and W denote
the height and width of the input image. With the decreasing of
resolution, the number of output channels is increasing. The change
of output channel Ci is presented in Tab. 5.

For each stage as shown in Fig. 4, we firstly downsample
the input and use the stride number to control the downsample
rate. After the downsample, all other layers in a stage stay
the same output size, i.e., spatial resolution and the number of
channels. Then, L groups of batch normalization [78], 1⇥ 1 Conv,
GELU activation [79], large kernel attention and feed-forward
network (FFN) [80] are stacked in sequence to extract features.
We design seven architectures VAN-B0, VAN-B1, VAN-B2, VAN-
B3, VAN-B4, VAN-B5, VAN-B6 according to the parameters and
computational cost. The details of the whole network are shown in
Tab. 5.

Complexity analysis. We present the parameters and floating
point operations (FLOPs) of our decomposition. Bias is omitted
in the computation process for simplifying format. We assume
that the input and output features have same size H ⇥ W ⇥ C.
The number of parameters P (K, d) and FLOPs F (K, d) can be
denoted as:

P (K, d) = C(dK
d
e2 ⇥ C + (2d� 1)2) + C2, (3)

F (K, d) = P (K, d)⇥H ⇥W. (4)

Here, d means dilation rate and K is kernel size. According to the
formula of FLOPs and parameters, the ratio of budget saving is the
same for FLOPs and parameters.

Implementation details. We adopt K = 21 by default. For
K = 21, the Equ. (3) takes the minimum value when d = 3,
which corresponds to 5 ⇥ 5 depth-wise convolution and 7 ⇥ 7
depth-wise convolution with dilation 3. For different number of
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H = + +

W C

Fig. 2. Decomposition diagram of large-kernel convolution. A standard
convolution can be decomposed into three parts: a depth-wise convo-
lution (DW-Conv), a depth-wise dilation convolution (DW-D-Conv), and
a pointwise convolution (1⇥1 Conv). The colored grids represent the
location of convolution kernel and the yellow grid means the center point.
The diagram shows that a 13⇥13 convolution is decomposed into a
5⇥5 depth-wise convolution, a 5⇥5 depth-wise dilation convolution with
dilation rate 3, and a pointwise convolution. Note: zero paddings are
omitted in the above figure.

the importance of different parts. To do so, we should learn the
relationship between different features.

There are two well-known methods to build relationship
between different parts. The first one is adopting self-attention
mechanism [13], [44], [48], [49] to capture long-range dependence.
There are three obvious shortcomings for self-attention applied in
computer vision which have been listed in Sec. 2.2. The second
one is to use large kernel convolution [30], [75], [76], [77] to build
relevance and produce attention map. There are still obvious cons
in this way. Large-kernel convolution brings a huge amount of
computational overhead and parameters.

To overcome above listed cons and make use of the pros of
self-attention and large kernel convolution, we propose to decom-
pose a large kernel convolution operation to capture long-range
relationship. As shown in Fig. 2, a large kernel convolution can be
divided into three components: a spatial local convolution (depth-
wise convolution), a spatial long-range convolution (depth-wise
dilation convolution), and a channel convolution (1⇥1 convolution).
Specifically. we can decompose a K ⇥ K convolution into a
dK

d
e ⇥ dK

d
e depth-wise dilation convolution with dilation d, a

(2d�1)⇥(2d�1) depth-wise convolution and a 1⇥1 convolution.
Through the above decomposition, we can capture long-range
relationship with slight computational cost and parameters. After
obtaining long-range relationship, we can estimate the importance
of a point and generate attention map. As demonstrated in Fig. 3(a),
the LKA module can be written as

Attention = Conv1⇥1(DW-D-Conv(DW-Conv(F))), (1)
Output = Attention⌦ F. (2)

Here, F 2 RC⇥H⇥W is the input feature. Attention 2
RC⇥H⇥W denotes attention map. The value in attention map
indicates the importance of each feature. ⌦ means element-wise
product. Different from common attention methods, LKA dose
not require an additional normalization function like sigmoid and
softmax, which is demonstrated in Tab. 3. We also believe the
key characteristics of attention methods is adaptively adjusting
output based on input feature, but not the normalized attention map.
As shown in Tab. 1, our proposed LKA combines the advantages
of convolution and self-attention. It takes the local contextual
information, large receptive field, linear complexity and dynamic
process into consideration. Furthermore, LKA not only achieves
the adaptability in the spatial dimension but also the adaptability in
the channel dimension. It worth noting that different channels often
represent different objects in deep neural networks [43], [65] and

TABLE 1
Desirable properties belonging to convolution, self-attention and LKA.

Properties Convolution Self-Attention LKA

Local Receptive Field 3 7 3
Long-range Dependence 7 3 3
Spatial Adaptability 7 3 3
Channel Adaptability 7 7 3
Computational complexity O(n) O(n2) O(n)

TABLE 2
Number of parameters for different forms of a 21⇥ 21 convolution. For
instance, when the number of channels C = 32, standard convolution
and MobileNet decomposition use 133⇥ and 4.5⇥ more parameters

than our decomposition respectively.

Standard Decomposition Type
Convolution MobileNet [6] Ours

C=32 451,584 15,136 3,392
C=64 1,806,336 32,320 8,832
C=128 7,225,344 72,832 25,856
C=256 28,901,376 178,432 84,480
C=512 115,605,504 487,936 300,032

adaptability in the channel dimension is also important for visual
tasks.

3.2 Visual Attention Network (VAN)
Our VAN has a simple hierarchical structure, i.e., a sequence of
four stages with decreasing output spatial resolution, i.e.,

H

4 ⇥ W

4 ,
H

8 ⇥W

8 , H

16⇥
W

16 and H

32⇥
W

32 respectively. Here, H and W denote
the height and width of the input image. With the decreasing of
resolution, the number of output channels is increasing. The change
of output channel Ci is presented in Tab. 5.

For each stage as shown in Fig. 4, we firstly downsample
the input and use the stride number to control the downsample
rate. After the downsample, all other layers in a stage stay
the same output size, i.e., spatial resolution and the number of
channels. Then, L groups of batch normalization [78], 1⇥ 1 Conv,
GELU activation [79], large kernel attention and feed-forward
network (FFN) [80] are stacked in sequence to extract features.
We design seven architectures VAN-B0, VAN-B1, VAN-B2, VAN-
B3, VAN-B4, VAN-B5, VAN-B6 according to the parameters and
computational cost. The details of the whole network are shown in
Tab. 5.

Complexity analysis. We present the parameters and floating
point operations (FLOPs) of our decomposition. Bias is omitted
in the computation process for simplifying format. We assume
that the input and output features have same size H ⇥ W ⇥ C.
The number of parameters P (K, d) and FLOPs F (K, d) can be
denoted as:

P (K, d) = C(dK
d
e2 ⇥ C + (2d� 1)2) + C2, (3)

F (K, d) = P (K, d)⇥H ⇥W. (4)

Here, d means dilation rate and K is kernel size. According to the
formula of FLOPs and parameters, the ratio of budget saving is the
same for FLOPs and parameters.

Implementation details. We adopt K = 21 by default. For
K = 21, the Equ. (3) takes the minimum value when d = 3,
which corresponds to 5 ⇥ 5 depth-wise convolution and 7 ⇥ 7
depth-wise convolution with dilation 3. For different number of
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(a) LKA (b) Non-Attention (c) Non-Attention(Add) (d) Self-Attention

Fig. 3. The structure of different modules: (a) the proposed Large Kernel Attention (LKA); (b) non-attention module; (c) replace multiplication in LKA
with addition ; (d) self-attention. It is worth noting that (d) is designed for 1D sequences.

1 x 1

GELU

LKA

1 x 1

1 x 1

d, 3 x 3

GELU

1 x 1

BN

Attention

BN

FFN

×L

Fig. 4. A stage of VAN. d means depth wise convolution. k ⇥ k denotes k
⇥ k convolution.

channels, we show the specific parameters in Tab. 2. It shows that
our decomposition owns significant advantages in decomposing
large kernel convolution in terms of parameters and FLOPs.

4 EXPERIMENTS

In this section, quantitative and qualitative experiments are exhib-
ited to demonstrate the effectiveness and efficiency of the proposed
VAN. We conduct quantitative experiments on ImageNet-1K [81]
and ImageNet-22K image classification dataset, COCO [82]
benchmark for object detection, instance segmentation, panoptic
segmentation and pose estimation, and ADE20K [83] semantic

TABLE 3
Ablation study of different modules in LKA. Top-1 accuracy (Acc) on

ImageNet validation set suggest that each part is critical. w/o Attention
means we adopt Fig. 3(b).

VAN-B0 Params. (M) FLOPs(G) Acc(%)
w/o DW-Conv 4.1 0.9 74.9
w/o DW-D-Conv 4.0 0.9 74.1
w/o Attention 4.1 0.9 74.3
w/o Attention (Add) 4.1 0.9 74.6
w/o 1 ⇥ 1 Conv 3.8 0.8 74.6
w/ Sigmoid 4.1 0.9 75.2
VAN-B0 4.1 0.9 75.4

TABLE 4
Throughput of Swin transformer and VAN on RTX 3090.

Method FLOPs(G) Throughput (Imgs/s) Acc(%)
Swin-T 4.5 821 81.3
Swin-S 8.7 500 83.0
Swin-B 15.4 376 83.5
VAN-B0 0.9 2140 75.4
VAN-B1 2.5 1420 81.1
VAN-B2 5.0 762 82.8
VAN-B3 9.0 452 83.9
VAN-B4 12.2 341 84.2

segmentation dataset. Furthermore, we visualize the experimental
results and class activation mapping(CAM) [84] by using Grad-
CAM [85] on ImageNet validation set. Experiments are based on
Pytorch [86] and Jittor [87].

4.1 Image Classification
4.1.1 ImageNet-1K Experiments

Settings. We conduct image classification on ImageNet-1K [81]
dataset. It contains 1.28M training images and 50K validation
images from 1,000 different categories. The whole training scheme
mostly follows [19]. We adopt random clipping, random horizontal
flipping, label-smoothing [88], mixup [89], cutmix [90] and random
erasing [91] to augment the training data. In the training process,
we train our VAN for 300 epochs by using AdamW [92], [93]
optimizer with momentum=0.9, weight decay=5⇥10�2 and batch

VAN (LKA)          Non-attention    Non-attention (add)     Self-attention
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TABLE 5
The detailed setting for different versions of the VAN. e.r. represents expansion ratio in the feed-forward network.

stage output size e.r. VAN-
B0 B1 B2 B3 B4 B5 B6

1 H

4 ⇥
W

4 ⇥ C 8 C = 32
L = 3

C = 64
L = 2

C = 64
L = 3

C = 64
L = 3

C = 64
L = 3

C = 96
L = 3

C = 96
L = 6

2 H

8 ⇥
W

8 ⇥ C 8 C = 64
L = 3

C = 128
L = 2

C = 128
L = 3

C = 128
L = 5

C = 128
L = 6

C = 192
L = 3

C = 192
L = 6

3 H

16 ⇥
W

16 ⇥ C 4 C = 160
L = 5

C = 320
L = 4

C = 320
L = 12

C = 320
L = 27

C = 320
L = 40

C = 480
L = 24

C = 384
L = 90

4 H

32 ⇥
W

32 ⇥ C 4 C = 256
L = 2

C = 512
L = 2

C = 512
L = 3

C = 512
L = 3

C = 512
L = 3

C = 768
L = 3

C = 768
L = 6

Parameters (M) 4.1 13.9 26.6 44.8 60.3 90.0 200
FLOPs (G) 0.9 2.5 5.0 9.0 12.2 17.2 38.4

Swin [15]
VAN

Fig. 5. Accuracy-Throughput Diagram. It claerly shows that VAN achieves
a better trade-off than swin transformer [15].

TABLE 6
Ablation study of different kernel size K in LKA. Acc(%) means Top-1

accuracy on ImageNet validation set.

Method K Dilation Params. (M) GFLOPs Acc(%)

VAN-B0 7 2 4.03 0.85 74.8
VAN-B0 14 3 4.07 0.87 75.3
VAN-B0 21 3 4.11 0.88 75.4
VAN-B0 28 4 4.14 0.90 75.4

size = 1,024. Cosine schedule [94] and warm-up strategy are
employed to adjust the learning rate(LR). The initial LR is set
to 5 ⇥ 10�4. We adopt a variant of LayerScale [95] in attention
layer which replaces xout = x + diag(�1,�2, ...,�d)f(x) with
xout = x + diag(�1,�2, ...,�d)(f(x) + x) with initial value
0.01 and achieves a better performance than original LayerScale.
Exponential moving average (EMA) [96] is also applied to improve
training process. During the eval stage, we report the top-1 accuracy
on ImageNet validation set under single crop setting.

Ablation Study. We conduct an ablation study to prove that
each component of LKA is critical. In order to obtain experimental
results quickly, we choose VAN-B0 as our baseline model. The
experimental results in the Tab. 3 indicate that all components in
LKA are indispensable to improve performance.

• DW-Conv. DW-Conv can make use of the local contextual
information of images. Without it, the classification per-
formance will drop by 0.5% (74.9% vs. 75.4%), showing

TABLE 7
Compare with the state-of-the-art methods on ImageNet validation set.
Params means parameter. GFLOPs denotes floating point operations.

Top-1 Acc represents Top-1 accuracy.FLOPs is

Method Params. (M) GFLOPs Top-1 Acc (%)
PVTv2-B0 [80] 3.4 0.6 70.5
T2T-ViT-7 [54] 4.3 1.1 71.7
DeiT-Tiny/16 [19] 5.7 1.3 72.2
TNT-Ti [97] 6.1 1.4 73.9
VAN-B0 4.1 0.9 75.4

ResNet18 [5] 11.7 1.8 69.8
PVT-Tiny [20] 13.2 1.9 75.1
PoolFormer-S12 [98] 11.9 2.0 77.2
PVTv2-B1 [80] 13.1 2.1 78.7
VAN-B1 13.9 2.5 81.1

ResNet50 [5] 25.6 4.1 76.5
ResNeXt50-32x4d [7] 25.0 4.3 77.6
RegNetY-4G [99] 21.0 4.0 80.0
DeiT-Small/16 [19] 22.1 4.6 79.8
T2T-ViTt-14 [54] 21.5 6.1 81.7
PVT-Small [20] 24.5 3.8 79.8
TNT-S [97] 23.8 5.2 81.3
ResMLP-24 [71] 30.0 6.0 79.4
gMLP-S [72] 20.0 4.5 79.6
Swin-T [15] 28.3 4.5 81.3
PoolFormer-S24 [98] 21.4 3.6 80.3
Twins-SVT-S [100] 24.0 2.8 81.7
PVTv2-B2 [80] 25.4 4.0 82.0
Focal-T [22] 29.1 4.9 82.2
ConvNeXt-T [21] 28.6 4.5 82.1
VAN-B2 26.6 5.0 82.8

ResNet101 [5] 44.7 7.9 77.4
ResNeXt101-32x4d [7] 44.2 8.0 78.8
Mixer-B/16 [69] 59.0 11.6 76.4
T2T-ViTt-19 [54] 39.2 9.8 82.4
PVT-Medium [20] 44.2 6.7 81.2
Swin-S [15] 49.6 8.7 83.0
ConvNeXt-S [15] 50.1 8.7 83.1
PVTv2-B3 [80] 45.2 6.9 83.2
Focal-S [22] 51.1 9.1 83.5
VAN-B3 44.8 9.0 83.9

ResNet152 [5] 60.2 11.6 78.3
T2T-ViTt-24 [54] 64.0 15.0 82.3
PVT-Large [20] 61.4 9.8 81.7
TNT-B [97] 66.0 14.1 82.8
PVTv2-B4 [80] 62.6 10.1 83.6
VAN-B4 60.3 12.2 84.2

the importance of local structural information in image
processing.

• DW-D-Conv. DW-D-Conv denotes depth-wise dilation
convolution which plays a role in capturing long-range
dependence in LKA. Without it, the classification per-
formance will drop by 1.3% (74.1% vs. 75.4%) which

Kernel size vs. Dilation vs. ImageNet Acc (%)

Properties of DWConv vs. MHSA vs. Large-kernel Attention

[1] Visual Attention Network. CVMJ, 2023.

Conv9×9     = DWConv3×3  + DWConv3×3  + PWConv1×1

Conv21×21 = DWConv5×5 +DWConv7×7 +PWConv1×1

(Dilation=3)

(Dilation=3)
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input Swin-T ConvNeXt-T VAN-B2

Fig. 7. Visualization results. All images come from different categories in
ImageNet validation set. CAM is produced by using Grad-CAM [85]. We
compare different CAMs produced by Swin-T [15], ConvNeXt-T [21] and
VAN-B2.

ConvNeXt-T by 0.7% (82.8% vs. 82.1%) since VAN has larger
receptive field and adaptive ability. Swin-Transformer is a well-
known ViT variant that adopts local attention and shifted window
manner. Due to that VAN is friendly for 2D structural information,
has larger receptive field and achieves adaptability in channel
dimension, VAN-B2 surpasses Swin-T by 1.5% (82.8% vs. 81.3%).
As for MLPs, we choose gMLP [72]. VAN-B2 surpass gMLP-
S [72] by 3.2% (82.8% vs. 79.6%) which reflects the importance
of locality.

Throughput. We test the throughput of the Swin trans-
former [15] and VAN on some hardware environment with the
RTX 3090. Results are shown in Tab. 4. Besides, we also plots the
accuracy-throughput diagram on Fig. 5, which clearly demonstrates
VAN achieves a better accuracy-throughput trade-off than swin
transformer [15].

4.1.2 Visualization
Class activation mapping (CAM) is a popular tool to visualize the
discriminative regions (attention maps). We adopt Grad-CAM [85]
to visualize the attentions on the ImageNet validation set produced
by VAN-B2 model. Results in Fig. 7 show that VAN-B2 can clearly
focus on the target objects. Thus, the visualizations intuitively
demonstrate the effectiveness of our method. Furthermore, we also
compare different CAM produced by Swin-T [15], ConvNeXt-
T [21] and VAN-B2. We can find that the activation area of VAN-
B2 is more accurate. In particular, our method shows obvious
advantages when the object is dominant in an image (last 3 lines

TABLE 9
Object detection on COCO 2017 dataset. #P means parameter.

RetinaNet 1⇥ denotes models are based on RetinaNet [103] and we
train them for 12 epochs.

Backbone RetinaNet 1⇥
#P (M) AP AP50 AP75 APS APM APL

VAN-B0 13.4 38.8 58.8 41.3 23.4 42.8 50.9

ResNet18 [5] 21.3 31.8 49.6 33.6 16.3 34.3 43.2
PoolFormer-S12 [20] 21.7 36.2 56.2 38.2 20.8 39.1 48.0
PVT-Tiny [20] 23.0 36.7 56.9 38.9 22.6 38.8 50.0
VAN-B1 23.6 42.3 63.1 45.1 26.1 46.2 54.1

ResNet50 [5] 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PVT-Small [20] 34.2 40.4 61.3 43.0 25.0 42.9 55.7
PoolFormer-S24 [98] 31.1 38.9 59.7 41.3 23.3 42.1 51.8
PoolFormer-S36 [98] 40.6 39.5 60.5 41.8 22.5 42.9 52.4
VAN-B2 36.3 44.9 65.7 48.4 27.4 49.2 58.7

ResNet101 [5] 56.7 38.5 57.8 41.2 21.4 42.6 51.1
PVT-Medium [20] 53.9 41.9 63.1 44.3 25.0 44.9 57.6
VAN-B3 54.5 47.5 68.4 51.2 30.9 52.1 62.4

TABLE 10
Object detection and instance segmentation on COCO 2017 dataset. #P
means parameter. Mask R-CNN 1⇥ denotes models are based on Mask
R-CNN [104] and we train them for 12 epochs. APb and APm refer to

bounding box AP and mask AP respectively.

Backbone Mask R-CNN 1⇥
#P (M) APb APb

50 APb

75 APm APm

50 APm

75
VAN-B0 23.9 40.2 62.6 44.4 37.6 59.6 40.4

ResNet18 [5] 31.2 34.0 54.0 36.7 31.2 51.0 32.7
PoolFormer-S12 [98] 31.6 37.3 59.0 40.1 34.6 55.8 36.9
PVT-Tiny [20] 32.9 36.7 59.2 39.3 35.1 56.7 37.3
VAN-B1 33.5 42.6 64.2 46.7 38.9 61.2 41.7

ResNet50 [5] 44.2 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small [20] 44.1 40.4 62.9 43.8 37.8 60.1 40.3
PoolFormer-S24 [98] 41.0 40.1 62.2 43.4 37.0 59.1 39.6
PoolFormer-S36 [98] 50.5 41.0 63.1 44.8 37.7 60.1 40.0
VAN-B2 46.2 46.4 67.8 51.0 41.8 65.2 44.9

ResNet101 [5] 63.2 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d [7] 62.8 41.9 62.5 45.9 37.5 59.4 40.2
PVT-Medium [20] 63.9 42.0 64.4 45.6 39.0 61.6 42.1
VAN-B3 64.4 48.3 69.6 53.3 43.4 67.0 46.8

in Fig. 7), which demonstrates its ability to capture long-range
dependence.

4.1.3 Pretraining on ImageNet-22K.

Settings. ImageNet-22K is a large-scale image classification
dataset, which contains about 14M images and 21841 categories.
Following swin transformer [15] and ConvNeXt [21], we use it
to pretrain our VAN for 90 epochs without EMA. The batch size
is set as 8,196. Other training details are same with ImageNet-
1K settings. After pretrained on ImageNet-22K, we fine-tune our
model on ImageNet-1K for 30 epochs. We pretrain our model with
224 ⇥ 224 input and fine-tune our model with 224 ⇥ 224 and 384
⇥ 384 respectively.

Results. We compare current state-of-the-art CNNs(e.g., Con-
vNeXt [21], EFFNetV2 [101]) and ViTs(e.g., Swin Trans-
former [15], ViT [13] and CoAtNet [102]). As shown in Tab. 8,
VAN achieves 87.8% Top-1 accuracy with 200M parameters
and surpasses the same level ViT [13], Swin Transformer [15],
EFFNetV2 [101] and ConvNeXt [21] on different resolution, which
proves the strong capability to adapt large-scale pretraining.

• Decomposed large kernel + Gating.

Grad-CAM visualization

Visual attention network 743

Fig. 9 Visualization results of attention map. We select images in ImageNet val set and visualize their attention maps directly. The
visualization method follows FocalNet [105], which visualizes the absolute value of attention map.

the state-of-the-art methods Swin Transformer [15]
and ConvNeXt [21] in Table 11. Results show that
VAN achieves the state-of-the-art performance with
di�erent detection methods such as Mask R-CNN
[110] and Cascade Mask R-CNN [112].
4.3 Semantic segmentation

Settings. We conduct experiments on ADE20K [90],
which contains 150 semantic categories for semantic
segmentation. It consists of 20,000, 2000, and 3000
respectively for training, validation, and testing.
MMSEG [119] is used as the base framework and
two famous segmentation heads, Semantic FPN [115]
and UperNet [116], are employed for evaluating our
VAN backbones. For a fair comparison, we adopt

Table 11 Comparison with the state-of-the-art vision backbones on
COCO 2017 benchmark. All models are trained for 36 epochs. We
calculate FLOPs with input size of 1280 ◊ 800. #F means FLOPs.
#P denotes parameters

Backbone Method APb

(%)
APb

50
(%)

APb
75

(%)
#P
(M)

#F
(G)

Swin-T [5]
Mask

R-CNN [110]

46.0 68.1 50.3 48 264
ConvNeXt-T [15] 46.2 67.9 50.8 48 262
MPViT-T [111] 48.4 70.5 52.6 43 268
VAN-B2 48.8 70.0 53.6 46 273
ResNet50 [5] Cascade

Mask
R-CNN [112]

46.3 64.3 50.5 82 739
Swin-T [15] 50.5 69.3 54.9 86 745
ConvNeXt-T [21] 50.4 69.1 54.8 86 741
VAN-B2 52.0 70.9 56.4 84 752
ResNet50 [5]

ATSS [113]
43.5 61.9 47.0 32 205

Swin-T [15] 47.2 66.5 51.3 36 215
VAN-B2 50.2 69.3 55.1 34 221
ResNet50 [5]

GFL [114]
44.5 63.0 48.3 32 208

Swin-T [15] 47.6 66.8 51.7 36 215
VAN-B2 50.8 69.8 55.7 34 224

two training/validating schemes following Refs. [108]
and [15] and quantitative results on the validation
set are shown in the upper and lower part in Table
12, respectively. All backbone models are pre-trained
on ImageNet-1K or ImageNet-22K training set. For
segmentation experiments, we adopt some common
data augmentations, including random horizontal
flipping, random scaling, and random cropping. We
choose AdamW with initial learning 0.00006 and
weight decay 0.01 as optimizer. The batch size is
set as 16. We adopt poly-learning rate decay policy.
We train our model 40k or 160k iterations respectively
for fair comparison.

Results. From the upper part in Table 12,
compared with di�erent backbones using FPN [115],
VAN-based methods are superior to CNN-based
(ResNet [5], ResNeXt [7]) or transformer-based (PVT
[20], PoolFormer [108], PVTv2 [86]) methods. For
instance, we surpass four PVTv2 [86] variants by
+1.3% (B0), +0.4% (B1), +1.5% (B2), +0.8% (B3)
mIoU under comparable parameters and FLOPs. In
the lower part in Table 12, when compared with
previous state-of-the-art CNN-based methods and
Swin-Transformer-based methods, four VAN variants
also show excellent performance with comparable
parameters and FLOPs. For instance, based on
UperNet [116], VAN-B2 is +5.2% and +4.0% mIoU
higher than ResNet-101 and Swin-T, respectively. For
ImageNet-22K pretrained models, VAN also performs
better than Swin Transformer [15] and ConvNeXt [21]
with less computational overhead, which is shown in
Table 13.

Attention map visualization
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aggregation in Focal Modulation (c).

3 Focal Modulation Network

3.1 From Self-Attention to Focal Modulation

Given a visual feature map X 2 RH⇥W⇥C as input, a generic encoding process generates for
each visual token (query) xi 2 RC a feature representation y

i
2 RC via the interaction T with its

surroundings X (e.g., neighboring tokens) and aggregation M over the contexts.

Self-attention. The self-attention modules use a late aggregation procedure formulated as
y
i
= M1(T1(xi,X),X), (1)

where the aggregation M1 over the contexts X is performed after the attention scores between query
and target are computed via interaction T1.

Focal modulation. In contrast, Focal Modulation generates refined representation y
i

using an early
aggregation procedure formulated as

y
i
= T2(M2(i,X),xi), (2)

where the context features are first aggregated using M2 at each location i, then the query interacts
with the aggregated feature based on T2 to form y

i
.

Comparing Eq. (1) and Eq. (2), we see that (i) the context aggregation of Focal Modulation M2

amortizes the computation of contexts via a shared operator (e.g., depth-wise convolution), while M1

in SA is more computationally expensive as it requires summing over non-shareable attention scores
for different queries; (ii) the interaction T2 is a lightweight operator between a token and its context,
while T1 involves computing token-to-token attention scores, which has quadratic complexity.

Based on Eq. (2), we instantiate our Focal Modulation to

y
i
= q(xi)�m(i,X), (3)

where q(·) is a query projection function and � is the element-wise multiplication. m(·) is a context
aggregation function, whose output is called modulator. Fig. 4(a) and (b) compare Self-Attention and
Focal Modulation. The proposed Focal Modulation has the following favorable properties:

• Translation invariance. Since q(·) and m(·) are always centered at the query token i and no
positional embedding is used, the modulation is invariant to translation of input feature map X.

• Explicit input-dependency. The modulator is computed via m(·) by aggregating the local features
around target location i, hence our Focal Modulation is explicitly input-dependent.

• Spatial- and channel-specific. The target location i as a pointer for m(·) enables spatial-specific
modulation. The element-wise multiplication enables channel-specific modulation.

• Decoupled feature granularity. q(·) preserve the finest information for individual tokens, while
m(·) extracts the coarser context. They are decoupled but combined through modulation.

In what follows, we describe in detail the implementation of m(·) in Eq. (3).

4

• Hierarchical Contextualization + Gated Aggregation.

Algorithm 1: Pseudo code for Focal Modulation.
# Input/output shape: (B, H, W, C); Batchsize B; Feature map height H, width W, dim C

# Focal levels: L; Conv kernel size at level `: k
`

1 def init( ):

2 pj_in, pj_cxt = Linear(C, 2*C + (L+1)), Conv2d(C, C, 1)

3 hc_layers = [Sequential(Conv2d(C, C, k
`
, groups=C), GeLU()) for ` in range(L)]

4 pj_out = Sequential(Linear(C, C), Dropout())

5 def forward(x, m=0):

6 x = pj_in(x).permute(0, 3, 1, 2)

7 q, z, gate = split(x, (C, C, L+1), 1)

8 for ` in range(L):

9 z = hc_layers[`](z) # Eq.(4), hierarchical contextualization

10 m = m + z * gate[:, `:`+1] # Eq.(5), gated aggregation

11 m = m + GeLU(z.mean(dim=(2,3))) * gate[:,L:]

12 x = q * pj_cxt(m) # Eq.(6), Focal Modulation

13 return pj_out( x.permute(0, 2, 3, 1) )

map M = h(Zout) 2 RH⇥W⇥C . In Fig. 6, we visualize the magnitude of modulator M at the last
layer of our FocalNet. Interestingly, the modulators automatically pay more attention to the objects
inducing the category, which implies a simple way of interpreting FocalNets.

Focal Modulation. Given the implementation of m(·) as described above, Focal Modulation of
Eq.(3) can be rewritten at the token level as

y
i
= q(xi)� h(

L+1X

`=1

g`

i
· z`

i
) (6)

where g`

i
and z`

i
are the gating value and visual feature at location i of G` and Z`, respectively. We

summarize the proposed Focal Modulation in Pytorch-style pseudo code in Algorithm 1, which is
implemented with a few depth-wise convolution and linear layers.

3.3 Relation to Other Architecture Designs

Based on the formula in Eq. (6), we build the connections between our Focal Modulation and other
relevant architecture designs beyond Self-Attention.

Depth-wise Convolution has been used to augment the local structural modeling for SA [89, 21, 25]
or purely to enable efficient long-range interactions [33, 28, 55]. Our Focal Modulation also employs
depth-wise convolution as one of the building blocks. However, instead of using its response as
the output directly, our Focal Modulation uses depth-wise convolution to capture the hierarchical
contexts, which are then converted into modulator to modulate each query. As we will show in our
experiments, these three components as a whole contribute the final decent performance.

Squeeze-and-Excitation (SE) was proposed in [35] prior to the emerge of vision transformers. It
exploits a global average pooling to squeeze the context globally, and then a multi-layer perception
(MLP) followed by a Sigmoid to obtain the excitation scalar for each channel. SE can be considered
as a special case of Focal Modulation. Setting L = 0 in Eq. (6), Focal Modulation degrades to
q(xi)�h(fg(xi) ·Avg-Pool(fz(X))) which resembles SE. In our experiments, we study this variant
and find that a global context is far insufficient for visual modeling.

PoolFormer was recently introduced in [100], and draw many attentions due to its simplicity. It uses
average pooling to extract the context locally in a sliding-window, and then adjust the query tokens
using an element-wise subtraction. It shares similar spirit to SE-Net, but uses local context instead of
global ones, and subtraction instead of multiplication. Putting it and Focal Modulation side-by-side,
we can find both of them extract the local context and enable the query-context interaction but in
different ways (Pooling v.s. Convolution, Subtraction v.s. Modulation).

3.4 Complexity

In Focal Modulation as Eq. (6), there are mainly three linear projections q(·), h(·), and fz(·) for
Z0. Besides, it requires a lightweight linear function fg(·) for gating and L depth-wise convolution
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Figure 5: Visualization of gating values G in Eq. (5) at last
layer of our FocalNet (L = 3) pretrained on ImageNet-1K.
The columns from left to right are input images, gating
maps at focal level 1,2,3 and global level.

Figure 6: Visualization of modulator values (cor-
responding to the right side of � in Eq. (6)) at
the last layer in FocalNet. The original modulator
map is upsampled for display.

3.2 Context Aggregation via m(·)

It has been proved that both short- and long-range contexts are important for visual modeling [95, 21,
55]. However, a single aggregation with larger receptive field is not only computationally expensive
in time and memory, but also undermines the local fine-grained structures which are particularly
useful for dense prediction tasks. Inspired by [95], we propose a multi-scale hierarchical context
aggregation. As depicted in Fig. 4 (c), the aggregation procedure consists of two steps: hierarchical
contextualization to extract contexts from local to global ranges at different levels of granularity and
gated aggregation to condense all context features at different granularity levels into the modulator.

Step 1: Hierarchical Contextualization.
Given input feature map X, we first project it into a new feature space with a linear layer Z0 =
fz(X) 2 RH⇥W⇥C . Then, a hierarchical presentation of contexts is obtained using a stack of L
depth-wise convolutions. At focal level ` 2 {1, ..., L}, the output Z` is derived by:

Z` = f
`

a(Z
`�1) , GeLU(DWConv(Z`�1)) 2 RH⇥W⇥C

, (4)

where f `

a
is the contextualization function at the `-th level, implemented via a depth-wise convolution

DWConv with kernel size k
` followed by a GeLU activation function [31]. The use of depth-wise

convolution for hierarchical contextualization of Eq. (4) is motivated by its desirable properties.
Compared to pooling [100, 35], depth-wise convolution is learnable and structure-aware. In contrast
to regular convolution, it is channel-wise and thus computationally much cheaper.

Hierarchical contextualization of Eq. (4) generates L levels of feature maps. At level `, the effective
receptive field is r` = 1 +

P
`

i=1(k
`
� 1), which is much larger than the kernel size k

`. To capture
global context of the whole input, which could be high-resolution, we apply a global average pooling
on the L-th level feature map ZL+1 = Avg-Pool(ZL). Thus, we obtain in total (L+1) feature maps
{Z`

}
L+1
`=1 , which collectively capture short- and long-range contexts at different levels of granularity.

Step 2: Gated Aggregation.
In this step, the (L+ 1) feature maps obtained via hierarchical contextualization are condensed into
a modulator. In an image, the relation between a visual token (query) and its surrounding contexts
often depends on the content itself. For example, the model might rely on local fine-grained features
for encoding the queries of salient visual objects, but mainly global coarse-grained features for the
queries of background scenes. Based on this intuition, we use a gating mechanism to control how
much to aggregate from different levels for each query. Specifically, we use a linear layer to obtain a
spatial- and level-aware gating weights G = fg(X) 2 RH⇥W⇥(L+1). Then, we perform a weighted
sum through an element-wise multiplication to obtain a single feature map Zout which has the same
size as the input X,

Zout =
L+1X

`=1

G` � Z` 2 RH⇥W⇥C (5)

where G`
2 RH⇥W⇥1 is a slice of G for the level `. When visualizing these gating maps in Fig. 5,

we surprisingly find our FocalNet indeed learns gathering the context from different focal levels
adaptively as we expect. As we can see, for a token on a small object, it focuses more on the
fine-grained local structure at low focal level, while a token in a uniform background needs to be
aware of much larger contexts from higher levels. Until now, all the aggregation is spatial. To enable
the communication across different channels, we use another linear layer h(.) to obtain the modulator
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Figure 5: Visualization of gating values G in Eq. (5) at last
layer of our FocalNet (L = 3) pretrained on ImageNet-1K.
The columns from left to right are input images, gating
maps at focal level 1,2,3 and global level.

Figure 6: Visualization of modulator values (cor-
responding to the right side of � in Eq. (6)) at
the last layer in FocalNet. The original modulator
map is upsampled for display.

3.2 Context Aggregation via m(·)

It has been proved that both short- and long-range contexts are important for visual modeling [95, 21,
55]. However, a single aggregation with larger receptive field is not only computationally expensive
in time and memory, but also undermines the local fine-grained structures which are particularly
useful for dense prediction tasks. Inspired by [95], we propose a multi-scale hierarchical context
aggregation. As depicted in Fig. 4 (c), the aggregation procedure consists of two steps: hierarchical
contextualization to extract contexts from local to global ranges at different levels of granularity and
gated aggregation to condense all context features at different granularity levels into the modulator.

Step 1: Hierarchical Contextualization.
Given input feature map X, we first project it into a new feature space with a linear layer Z0 =
fz(X) 2 RH⇥W⇥C . Then, a hierarchical presentation of contexts is obtained using a stack of L
depth-wise convolutions. At focal level ` 2 {1, ..., L}, the output Z` is derived by:

Z` = f
`

a(Z
`�1) , GeLU(DWConv(Z`�1)) 2 RH⇥W⇥C

, (4)

where f `

a
is the contextualization function at the `-th level, implemented via a depth-wise convolution

DWConv with kernel size k
` followed by a GeLU activation function [31]. The use of depth-wise

convolution for hierarchical contextualization of Eq. (4) is motivated by its desirable properties.
Compared to pooling [100, 35], depth-wise convolution is learnable and structure-aware. In contrast
to regular convolution, it is channel-wise and thus computationally much cheaper.

Hierarchical contextualization of Eq. (4) generates L levels of feature maps. At level `, the effective
receptive field is r` = 1 +

P
`

i=1(k
`
� 1), which is much larger than the kernel size k

`. To capture
global context of the whole input, which could be high-resolution, we apply a global average pooling
on the L-th level feature map ZL+1 = Avg-Pool(ZL). Thus, we obtain in total (L+1) feature maps
{Z`

}
L+1
`=1 , which collectively capture short- and long-range contexts at different levels of granularity.

Step 2: Gated Aggregation.
In this step, the (L+ 1) feature maps obtained via hierarchical contextualization are condensed into
a modulator. In an image, the relation between a visual token (query) and its surrounding contexts
often depends on the content itself. For example, the model might rely on local fine-grained features
for encoding the queries of salient visual objects, but mainly global coarse-grained features for the
queries of background scenes. Based on this intuition, we use a gating mechanism to control how
much to aggregate from different levels for each query. Specifically, we use a linear layer to obtain a
spatial- and level-aware gating weights G = fg(X) 2 RH⇥W⇥(L+1). Then, we perform a weighted
sum through an element-wise multiplication to obtain a single feature map Zout which has the same
size as the input X,

Zout =
L+1X

`=1

G` � Z` 2 RH⇥W⇥C (5)

where G`
2 RH⇥W⇥1 is a slice of G for the level `. When visualizing these gating maps in Fig. 5,

we surprisingly find our FocalNet indeed learns gathering the context from different focal levels
adaptively as we expect. As we can see, for a token on a small object, it focuses more on the
fine-grained local structure at low focal level, while a token in a uniform background needs to be
aware of much larger contexts from higher levels. Until now, all the aggregation is spatial. To enable
the communication across different channels, we use another linear layer h(.) to obtain the modulator
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3.2 Context Aggregation via m(·)

It has been proved that both short- and long-range contexts are important for visual modeling [95, 21,
55]. However, a single aggregation with larger receptive field is not only computationally expensive
in time and memory, but also undermines the local fine-grained structures which are particularly
useful for dense prediction tasks. Inspired by [95], we propose a multi-scale hierarchical context
aggregation. As depicted in Fig. 4 (c), the aggregation procedure consists of two steps: hierarchical
contextualization to extract contexts from local to global ranges at different levels of granularity and
gated aggregation to condense all context features at different granularity levels into the modulator.

Step 1: Hierarchical Contextualization.
Given input feature map X, we first project it into a new feature space with a linear layer Z0 =
fz(X) 2 RH⇥W⇥C . Then, a hierarchical presentation of contexts is obtained using a stack of L
depth-wise convolutions. At focal level ` 2 {1, ..., L}, the output Z` is derived by:

Z` = f
`

a(Z
`�1) , GeLU(DWConv(Z`�1)) 2 RH⇥W⇥C

, (4)

where f `

a
is the contextualization function at the `-th level, implemented via a depth-wise convolution

DWConv with kernel size k
` followed by a GeLU activation function [31]. The use of depth-wise

convolution for hierarchical contextualization of Eq. (4) is motivated by its desirable properties.
Compared to pooling [100, 35], depth-wise convolution is learnable and structure-aware. In contrast
to regular convolution, it is channel-wise and thus computationally much cheaper.

Hierarchical contextualization of Eq. (4) generates L levels of feature maps. At level `, the effective
receptive field is r` = 1 +

P
`

i=1(k
`
� 1), which is much larger than the kernel size k

`. To capture
global context of the whole input, which could be high-resolution, we apply a global average pooling
on the L-th level feature map ZL+1 = Avg-Pool(ZL). Thus, we obtain in total (L+1) feature maps
{Z`

}
L+1
`=1 , which collectively capture short- and long-range contexts at different levels of granularity.

Step 2: Gated Aggregation.
In this step, the (L+ 1) feature maps obtained via hierarchical contextualization are condensed into
a modulator. In an image, the relation between a visual token (query) and its surrounding contexts
often depends on the content itself. For example, the model might rely on local fine-grained features
for encoding the queries of salient visual objects, but mainly global coarse-grained features for the
queries of background scenes. Based on this intuition, we use a gating mechanism to control how
much to aggregate from different levels for each query. Specifically, we use a linear layer to obtain a
spatial- and level-aware gating weights G = fg(X) 2 RH⇥W⇥(L+1). Then, we perform a weighted
sum through an element-wise multiplication to obtain a single feature map Zout which has the same
size as the input X,

Zout =
L+1X

`=1

G` � Z` 2 RH⇥W⇥C (5)

where G`
2 RH⇥W⇥1 is a slice of G for the level `. When visualizing these gating maps in Fig. 5,

we surprisingly find our FocalNet indeed learns gathering the context from different focal levels
adaptively as we expect. As we can see, for a token on a small object, it focuses more on the
fine-grained local structure at low focal level, while a token in a uniform background needs to be
aware of much larger contexts from higher levels. Until now, all the aggregation is spatial. To enable
the communication across different channels, we use another linear layer h(.) to obtain the modulator
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Eq. (5)

Algorithm 1: Pseudo code for Focal Modulation.
# Input/output shape: (B, H, W, C); Batchsize B; Feature map height H, width W, dim C

# Focal levels: L; Conv kernel size at level `: k
`

1 def init( ):

2 pj_in, pj_cxt = Linear(C, 2*C + (L+1)), Conv2d(C, C, 1)

3 hc_layers = [Sequential(Conv2d(C, C, k
`
, groups=C), GeLU()) for ` in range(L)]

4 pj_out = Sequential(Linear(C, C), Dropout())

5 def forward(x, m=0):

6 x = pj_in(x).permute(0, 3, 1, 2)

7 q, z, gate = split(x, (C, C, L+1), 1)

8 for ` in range(L):

9 z = hc_layers[`](z) # Eq.(4), hierarchical contextualization

10 m = m + z * gate[:, `:`+1] # Eq.(5), gated aggregation

11 m = m + GeLU(z.mean(dim=(2,3))) * gate[:,L:]

12 x = q * pj_cxt(m) # Eq.(6), Focal Modulation

13 return pj_out( x.permute(0, 2, 3, 1) )

map M = h(Zout) 2 RH⇥W⇥C . In Fig. 6, we visualize the magnitude of modulator M at the last
layer of our FocalNet. Interestingly, the modulators automatically pay more attention to the objects
inducing the category, which implies a simple way of interpreting FocalNets.

Focal Modulation. Given the implementation of m(·) as described above, Focal Modulation of
Eq.(3) can be rewritten at the token level as

y
i
= q(xi)� h(

L+1X

`=1

g`

i
· z`

i
) (6)

where g`

i
and z`

i
are the gating value and visual feature at location i of G` and Z`, respectively. We

summarize the proposed Focal Modulation in Pytorch-style pseudo code in Algorithm 1, which is
implemented with a few depth-wise convolution and linear layers.

3.3 Relation to Other Architecture Designs

Based on the formula in Eq. (6), we build the connections between our Focal Modulation and other
relevant architecture designs beyond Self-Attention.

Depth-wise Convolution has been used to augment the local structural modeling for SA [89, 21, 25]
or purely to enable efficient long-range interactions [33, 28, 55]. Our Focal Modulation also employs
depth-wise convolution as one of the building blocks. However, instead of using its response as
the output directly, our Focal Modulation uses depth-wise convolution to capture the hierarchical
contexts, which are then converted into modulator to modulate each query. As we will show in our
experiments, these three components as a whole contribute the final decent performance.

Squeeze-and-Excitation (SE) was proposed in [35] prior to the emerge of vision transformers. It
exploits a global average pooling to squeeze the context globally, and then a multi-layer perception
(MLP) followed by a Sigmoid to obtain the excitation scalar for each channel. SE can be considered
as a special case of Focal Modulation. Setting L = 0 in Eq. (6), Focal Modulation degrades to
q(xi)�h(fg(xi) ·Avg-Pool(fz(X))) which resembles SE. In our experiments, we study this variant
and find that a global context is far insufficient for visual modeling.

PoolFormer was recently introduced in [100], and draw many attentions due to its simplicity. It uses
average pooling to extract the context locally in a sliding-window, and then adjust the query tokens
using an element-wise subtraction. It shares similar spirit to SE-Net, but uses local context instead of
global ones, and subtraction instead of multiplication. Putting it and Focal Modulation side-by-side,
we can find both of them extract the local context and enable the query-context interaction but in
different ways (Pooling v.s. Convolution, Subtraction v.s. Modulation).

3.4 Complexity

In Focal Modulation as Eq. (6), there are mainly three linear projections q(·), h(·), and fz(·) for
Z0. Besides, it requires a lightweight linear function fg(·) for gating and L depth-wise convolution
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Eq. (6)

Figure 5: Visualization of gating values G in Eq. (5) at last
layer of our FocalNet (L = 3) pretrained on ImageNet-1K.
The columns from left to right are input images, gating
maps at focal level 1,2,3 and global level.

Figure 6: Visualization of modulator values (cor-
responding to the right side of � in Eq. (6)) at
the last layer in FocalNet. The original modulator
map is upsampled for display.

3.2 Context Aggregation via m(·)

It has been proved that both short- and long-range contexts are important for visual modeling [95, 21,
55]. However, a single aggregation with larger receptive field is not only computationally expensive
in time and memory, but also undermines the local fine-grained structures which are particularly
useful for dense prediction tasks. Inspired by [95], we propose a multi-scale hierarchical context
aggregation. As depicted in Fig. 4 (c), the aggregation procedure consists of two steps: hierarchical
contextualization to extract contexts from local to global ranges at different levels of granularity and
gated aggregation to condense all context features at different granularity levels into the modulator.

Step 1: Hierarchical Contextualization.
Given input feature map X, we first project it into a new feature space with a linear layer Z0 =
fz(X) 2 RH⇥W⇥C . Then, a hierarchical presentation of contexts is obtained using a stack of L
depth-wise convolutions. At focal level ` 2 {1, ..., L}, the output Z` is derived by:

Z` = f
`

a(Z
`�1) , GeLU(DWConv(Z`�1)) 2 RH⇥W⇥C

, (4)

where f `

a
is the contextualization function at the `-th level, implemented via a depth-wise convolution

DWConv with kernel size k
` followed by a GeLU activation function [31]. The use of depth-wise

convolution for hierarchical contextualization of Eq. (4) is motivated by its desirable properties.
Compared to pooling [100, 35], depth-wise convolution is learnable and structure-aware. In contrast
to regular convolution, it is channel-wise and thus computationally much cheaper.

Hierarchical contextualization of Eq. (4) generates L levels of feature maps. At level `, the effective
receptive field is r` = 1 +

P
`

i=1(k
`
� 1), which is much larger than the kernel size k

`. To capture
global context of the whole input, which could be high-resolution, we apply a global average pooling
on the L-th level feature map ZL+1 = Avg-Pool(ZL). Thus, we obtain in total (L+1) feature maps
{Z`

}
L+1
`=1 , which collectively capture short- and long-range contexts at different levels of granularity.

Step 2: Gated Aggregation.
In this step, the (L+ 1) feature maps obtained via hierarchical contextualization are condensed into
a modulator. In an image, the relation between a visual token (query) and its surrounding contexts
often depends on the content itself. For example, the model might rely on local fine-grained features
for encoding the queries of salient visual objects, but mainly global coarse-grained features for the
queries of background scenes. Based on this intuition, we use a gating mechanism to control how
much to aggregate from different levels for each query. Specifically, we use a linear layer to obtain a
spatial- and level-aware gating weights G = fg(X) 2 RH⇥W⇥(L+1). Then, we perform a weighted
sum through an element-wise multiplication to obtain a single feature map Zout which has the same
size as the input X,

Zout =
L+1X

`=1

G` � Z` 2 RH⇥W⇥C (5)

where G`
2 RH⇥W⇥1 is a slice of G for the level `. When visualizing these gating maps in Fig. 5,

we surprisingly find our FocalNet indeed learns gathering the context from different focal levels
adaptively as we expect. As we can see, for a token on a small object, it focuses more on the
fine-grained local structure at low focal level, while a token in a uniform background needs to be
aware of much larger contexts from higher levels. Until now, all the aggregation is spatial. To enable
the communication across different channels, we use another linear layer h(.) to obtain the modulator
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[1] Focal Modulation Networks. NeurIPS, 2022.
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• High-order Interactions: Recursive DWConv + Gating.
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gnConv PyTorch-style code for gnConv
class gnconv(nn.Module):

def __init__(self, dim, order, dwtype):
super().__init__()
self.order = order
self.dims = [dim // 2 ** i for i in range(order)].reverse()
self.proj_in = nn.Conv2d(dim, 2*dim, 1)
self.dwconv = dwconv(sum(self.dims), type=dwtype)
self.projs = nn.ModuleList(

[nn.Conv2d(self.dims[i], self.dims[i+1], 1)
for i in range(order-1)])

self.proj_out = nn.Conv2d(dim, dim, 1)

def forward(self, x):
x = self.proj_in(x)
y, x = torch.split(x, (self.dims[0], sum(self.dims)), dim=1) 
x = self.dwconv(x)
x_list = torch.split(x, self.dims, dim=1)
x = y * x_list[0]
for i in range(self.order -1):

x = self.projs[i](x) * x_list[i+1]
return self.proj_out(x)

Figure 2: Overview of the basic building block in HorNet with gnConv. We adopt the block design of
Transformers [56] and replace the self-attention sub-layer with g

nConv to develop our HorNet (left). We also
provide the detailed implementation of g

3Conv (middle) and the Pytorch-style code for an arbitrary order (right).

receptive field in vision Transformers makes it easier to capture long-term dependencies, which is
also recognized as one of the key advantages of vision Transformers. Inspired by this design, there
are some efforts to introduce large kernel convolutions to CNNs recently [14, 43, 46]. To make our
g

nConv capable of capturing long-term interactions, we adopt two implementations for the depth-wise
convolution f :

• 7⇥7 Convolution. 7⇥7 is the default window/kernel size of Swin Transformers [42] and
ConvNext [43]. Studies in [43] show that the kernel size produces good performance on
ImageNet classification and various downstream tasks. We follow this configuration to fairly
compare with representative work of vision Transformers and modern CNNs.

• Global Filter (GF). The GF layer [46] multiplies the frequency domain features with
learnable global filters, which is equivalent to a convolution in the spatial domain with
a global kernel size and circular padding. We use a modified version of the GF layer by
processing half of the channels with the global filter and the other half with 3⇥3 depth-wise
convolutions and only use GF layers in late stages to preserve more local details.

Spatial interactions in vision models. We review some representative vision model designs from
the perspective of spatial interactions, as shown in Figure 1. Specifically, we are interested in the
interactions between a feature xi and its neighboring feature xj , j 2 ⌦i. By using the tool designed
for explaining the interaction effect (IE) in [33, 1], we provide an intuitive analysis of the order of
explicit spatial interactions in Appendix B. Our analysis reveals a key difference between vision
Transformers and previous architectures from a new view, i.e., vision Transformers have higher-order
spatial interactions in each basic block. The result inspires us to explore an architecture that can
realize more efficient and effective spatial interactions with more than two orders. As discussed
above, our proposed g

nConv can achieve arbitrary-order interactions with bounded complexity. It is
also worth noting that similar to other scaling factors in deep models like width [69] and depth [22],
simply increasing the order of spatial interactions without considering the overall model capacity will
not lead to a good trade-off [51]. In this paper, we focus on developing a stronger visual modeling
architecture based on the analysis of the spatial interaction orders of well-designed models. We
believe a more thorough and formal discussion on the high-order spatial interactions can be an
important future direction.

Relation to dot-product self-attention. Although the computation of our g
nConv largely differs

from dot-product self-attention, we will show that g
nConv also accomplishes the goal of input-

adaptive spatial mixing. Let M be the attention matrix obtained by multi-head self-attention (MHSA),
we write M as (m
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Figure 4: Visualization of the adaptive weights generated by g
nConv. We see that the spatial mixing weights of

our g
nConv are adaptive both to input samples and spatial locations, which further indicates that g

nConv shares
these two desirable characteristics with the self-attention operation.

gnConv for isotropic models. We also evaluate g
nConv on isotropic architectures (with constant

spatial resolutions). We replace the self-attention in DeiT-S [52] with our g
nConv and adjust the

number of blocks to 13 to obtain the isotropic HorNet-S7⇥7 and HorNet-SGF. We compare DeiT-S,
isotropic ConvNeXt-S and isotropic HorNet-S in Table 6b. While isotropic ConvNeXt-S cannot
improve DeiT-S, our isotropic HorNet surpasses DeiT-S by a large margin. These results indicate that
our g

nConv can better realize the functions of self-attention compared to plain convolutions and have
better ability to model the complex spatial interactions.

gnConv for other operations. To further demonstrate the universality of g
nConv, we use 3⇥3

depth-wise convolution and 3⇥3 pooling [67] as the basic operation in the g
nConv. The results in

Table 6c show that g
nConv can also improve these two operations by large margins, indicating our

g
nConv is potentially more powerful when equipped with some better basic operations.

Accuracy-complexity trade-offs. We visualize accuracy-complexity trade-offs of Swin, ConvNeXt
and HorNet series in Figure 3. For fair comparisons, we fix the input image size to 224⇥ 224 and use
HorNet7⇥7 such that all the compared models are based on 7⇥7 local window. We see HorNet can
achieve better trade-offs than the representative vision Transformers and modern CNNs with regards
to model size, FLOPs and GPU latency.

Visualization. We provide some visualizations of the adaptive weights learned by g
nConv in

Figure 4. For each sample, we show the value of 1

C

P
C

c=1
h
c

ij
(see Equation (3.8) or the definition

of hc

ij
) for two random spatial locations i from layer {1, 3, 5, 7, 8, 12} of the isotropic HorNet-S

model. Figure 4 demonstrates that the spatial mixing weights of our g
nConv are adaptive both to

input samples and spatial locations, which further indicates that g
nConv shares these two desirable

characteristics with the self-attention operation.

Limitations. While HorNet shows better overall latency-accuracy trade-offs, we notice that HorNet
is slower than ConvNeXt with similar FLOPs on GPU, which may be caused by the more complex
designs to perform the high-order interactions. We think that developing a more hardware-friendly
operation for high-order spatial interactions is an interesting future direction to improve our work.

5 Conclusion

We have presented the Recursive Gated Convolution (gnConv) that performs efficient, extendable, and
translation-equivariant high-order spatial interactions with gated convolutions and recursive deigns.
g

nConv can serve as a drop-in replace of the spatial mixing layer in various vision Transformers and
convolution-based models. Based on the operation, we have constructed a new family of generic
vision backbones HorNet. Extensive experiments demonstrate the effectiveness of g

nConv and
HorNet on commonly used visual recognition benchmarks. We hope our attempt can inspire future
work to further explore the high-order spatial interactions in vision models.
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where wV is the weight of the V-projection layer. Note that mij obtained by the dot-product operation
contains 1-order interaction. On the other hand, the output of our g

nConv (before the �out) can be
written as

x
(i,c)

gnConv = p
(i,c)

n
=

X

j2⌦i

CX

c0=1

w
c

n�1,i!j
g(i,c)

n�1
w

(c
0
,c)

�in
x
(j,c

0
) ,

X

j2⌦i

CX

c0=1

h
c

ij
w

(c
0
,c)

�in
x
(j,c

0
)
, (3.8)

where wn�1 is the convolutional weight for fn�1, w�in is the linear weight of �in, and gn�1 =

gn�1(pn�1) is a projection of pn�1. From the formulation in Equation (3.8) we find our g
nConv also

achieves input-adaptive spatial mixing with {hc

ij
} as the weights. Observing that hij is computed

from pn�1 which contains n� 1 order interactions, we can regard our g
nConv as an extension of the

self-attention in terms of the order of the spatial mixing weight. Therefore, our g
nConv can better

model more complex spatial interactions.

The details of g
nConv and our implementation are summarized in Figure 2.

3.2 Model Architectures

HorNet. The g
nConv can be a drop-in replacement of the spatial mixing layer in vision Transform-

ers [52, 42] or modern CNNs [43]. We follow the same meta-architecture as [56, 42] to construct
HorNet, where the basic block contains a spatial mixing layer and a feed-forward network (FFN).
Depending on the model size and the implementation of the depth-wise convolution fk in our g

nConv,
we have two series of model variants named HorNet-T/S/B/L7⇥7 and HorNet-T/S/B/LGF. We con-
sider the popular Swin Transformer [42] and ConvNeXt [43] as the vision Transformer and CNN
baselines since our models are implemented based on a convolution-based framework while having
high-order interactions like vision Transformers. To fairly compare with the baselines, we directly
follow the number of blocks of Swin Transformers-S/B/L [42] but insert an extra block to the stage 2
to make the overall complexity close, resulting in [2, 3, 18, 2] blocks in each stage in all of the model
variants. We simply adjust the base number of channels C to construct models with different sizes
and set the number of channels in 4 stages as [C, 2C, 4C, 8C] following common practice. We use
C = 64, 96, 128, 192 for HorNet-T/S/B/L, respectively. We set the interaction orders (i.e., the n in
g

nConv) for each stage as 2,3,4,5 by default, such that the channels of the coarsest order C0 is the
same across different stages.

HorFPN. Apart from using g
nConv in visual encoders, we find our g

nConv can be an enhanced
alternative for standard convolution that considers higher-order spatial interactions in a wide range of
convolution-based models. Thus, we replace spatial convolutions for feature fusion in the FPN [37]
with our g

nConv to improve spatial interactions for downstream tasks. Specifically, we add our
g

nConv after the fusion of features from different pyramid levels. For object detection, we replace
the 3⇥3 convolution after the top-down pathway with the g

nConv in each level. For semantic
segmentation, we simply replace the 3⇥3 convolution after the concatenation of the multi-level
feature maps with g

nConv since the final results are directly predicted from this concatenated feature.
We also have two implementations called HorFPN7⇥7 and HorFPNGF decided by the choice of fk.

4 Experiments
We conduct extensive experiments to verify the effectiveness of our method. We present the main
results on ImageNet [13] and compare them with various architectures. We also test our models
on the downstream dense prediction tasks on commonly used semantic segmentation benchmark
ADE20K [71] and object detection dataset COCO [38]. Lastly, we provide ablation studies of our
designs and analyze the effectiveness of g

nConv on a wide range of models.

4.1 ImageNet Classification

Setups. We conduct image classification experiments on the widely used ImageNet [13] dataset. We
train our HorNet-T/S/B models using the standard ImageNet-1K dataset following common practice.
To fairly compare with previous work, we directly use the training configurations of [43, 42, 52]
to train our models. We train the models for 300 epochs with 224 ⇥ 224 input. To evaluate the
scaling ability of our designs, we further train the HorNet-L models on the ImageNet-22K dataset
that contains over 10⇥ images and more categories. We follow previous practice [42, 43] to train
our models for 90 epochs and use a similar data augmentation strategy as ImageNet-1K experiments.
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gnConv PyTorch-style code for gnConv
class gnconv(nn.Module):

def __init__(self, dim, order, dwtype):
super().__init__()
self.order = order
self.dims = [dim // 2 ** i for i in range(order)].reverse()
self.proj_in = nn.Conv2d(dim, 2*dim, 1)
self.dwconv = dwconv(sum(self.dims), type=dwtype)
self.projs = nn.ModuleList(

[nn.Conv2d(self.dims[i], self.dims[i+1], 1)
for i in range(order-1)])

self.proj_out = nn.Conv2d(dim, dim, 1)

def forward(self, x):
x = self.proj_in(x)
y, x = torch.split(x, (self.dims[0], sum(self.dims)), dim=1) 
x = self.dwconv(x)
x_list = torch.split(x, self.dims, dim=1)
x = y * x_list[0]
for i in range(self.order -1):

x = self.projs[i](x) * x_list[i+1]
return self.proj_out(x)

Figure 2: Overview of the basic building block in HorNet with gnConv. We adopt the block design of
Transformers [56] and replace the self-attention sub-layer with g

nConv to develop our HorNet (left). We also
provide the detailed implementation of g

3Conv (middle) and the Pytorch-style code for an arbitrary order (right).

receptive field in vision Transformers makes it easier to capture long-term dependencies, which is
also recognized as one of the key advantages of vision Transformers. Inspired by this design, there
are some efforts to introduce large kernel convolutions to CNNs recently [14, 43, 46]. To make our
g

nConv capable of capturing long-term interactions, we adopt two implementations for the depth-wise
convolution f :

• 7⇥7 Convolution. 7⇥7 is the default window/kernel size of Swin Transformers [42] and
ConvNext [43]. Studies in [43] show that the kernel size produces good performance on
ImageNet classification and various downstream tasks. We follow this configuration to fairly
compare with representative work of vision Transformers and modern CNNs.

• Global Filter (GF). The GF layer [46] multiplies the frequency domain features with
learnable global filters, which is equivalent to a convolution in the spatial domain with
a global kernel size and circular padding. We use a modified version of the GF layer by
processing half of the channels with the global filter and the other half with 3⇥3 depth-wise
convolutions and only use GF layers in late stages to preserve more local details.

Spatial interactions in vision models. We review some representative vision model designs from
the perspective of spatial interactions, as shown in Figure 1. Specifically, we are interested in the
interactions between a feature xi and its neighboring feature xj , j 2 ⌦i. By using the tool designed
for explaining the interaction effect (IE) in [33, 1], we provide an intuitive analysis of the order of
explicit spatial interactions in Appendix B. Our analysis reveals a key difference between vision
Transformers and previous architectures from a new view, i.e., vision Transformers have higher-order
spatial interactions in each basic block. The result inspires us to explore an architecture that can
realize more efficient and effective spatial interactions with more than two orders. As discussed
above, our proposed g

nConv can achieve arbitrary-order interactions with bounded complexity. It is
also worth noting that similar to other scaling factors in deep models like width [69] and depth [22],
simply increasing the order of spatial interactions without considering the overall model capacity will
not lead to a good trade-off [51]. In this paper, we focus on developing a stronger visual modeling
architecture based on the analysis of the spatial interaction orders of well-designed models. We
believe a more thorough and formal discussion on the high-order spatial interactions can be an
important future direction.

Relation to dot-product self-attention. Although the computation of our g
nConv largely differs

from dot-product self-attention, we will show that g
nConv also accomplishes the goal of input-

adaptive spatial mixing. Let M be the attention matrix obtained by multi-head self-attention (MHSA),
we write M as (m
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• 7⇥7 Convolution. 7⇥7 is the default window/kernel size of Swin Transformers [42] and
ConvNext [43]. Studies in [43] show that the kernel size produces good performance on
ImageNet classification and various downstream tasks. We follow this configuration to fairly
compare with representative work of vision Transformers and modern CNNs.

• Global Filter (GF). The GF layer [46] multiplies the frequency domain features with
learnable global filters, which is equivalent to a convolution in the spatial domain with
a global kernel size and circular padding. We use a modified version of the GF layer by
processing half of the channels with the global filter and the other half with 3⇥3 depth-wise
convolutions and only use GF layers in late stages to preserve more local details.

Spatial interactions in vision models. We review some representative vision model designs from
the perspective of spatial interactions, as shown in Figure 1. Specifically, we are interested in the
interactions between a feature xi and its neighboring feature xj , j 2 ⌦i. By using the tool designed
for explaining the interaction effect (IE) in [33, 1], we provide an intuitive analysis of the order of
explicit spatial interactions in Appendix B. Our analysis reveals a key difference between vision
Transformers and previous architectures from a new view, i.e., vision Transformers have higher-order
spatial interactions in each basic block. The result inspires us to explore an architecture that can
realize more efficient and effective spatial interactions with more than two orders. As discussed
above, our proposed g

nConv can achieve arbitrary-order interactions with bounded complexity. It is
also worth noting that similar to other scaling factors in deep models like width [69] and depth [22],
simply increasing the order of spatial interactions without considering the overall model capacity will
not lead to a good trade-off [51]. In this paper, we focus on developing a stronger visual modeling
architecture based on the analysis of the spatial interaction orders of well-designed models. We
believe a more thorough and formal discussion on the high-order spatial interactions can be an
important future direction.
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Multi-order Interaction: MogaNet

• Representation Bottleneck[1]: Loss in the middle-order interactions.
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A.7 VIDEO PREDICTION ON MOVING MNIST

We evaluate various Metaformer architectures (Yu et al., 2022) and MogaNet with video prediction
tasks on Moving MNIST (MMNIST) (Lin et al., 2014) based on SimVP (Gao et al., 2022). Notice
that the hidden translator of SimVP is a 2D network module to learn spatio-temporal representation,
which any 2D architecture can replace. Therefore, we can benchmark various architectures based
on the SimVP framework. In MMNIST (Srivastava et al., 2015), each video is randomly generated
with 20 frames containing two digits in 64 ⇥ 64 resolutions, and the model takes 10 frames as the
input to predict the next 10 frames. Video predictions are evaluated by Mean Square Error (MSE),
Mean Absolute Error (MAE), and Structural Similarity Index (SSIM). All models are trained on
MMNIST from scratch for 200 or 2000 epochs with Adam optimizer, a batch size of 16, a OneCycle
learning rate scheduler, an initial learning rate selected in {1⇥10

�2, 5⇥10
�3, 1⇥10

�3, 5⇥10
�4}.

Experiments of video prediction are implemented on OpenSTL1 codebase (Tan et al., 2023) and
run on a single NVIDIA Tesla V100 GPU. View full benchmark results in Appendix D.6.

B EMPIRICAL EXPERIMENT RESULTS

B.1 REPRESENTATION BOTTLENECK OF DNNS FROM THE VIEW OF MULTI-ORDER
INTERACTION

Multi-order game-theoretic interaction. In Sec. 3, we interpret the learned representation of
DNNs through the lens of multi-order game-theoretic interaction (Zhang et al., 2020; Deng et al.,
2022), which disentangles inter-variable communication effects in a DNN into diverse game-
theoretic components of different interaction orders. The order here denotes the scale of context

involved in the whole computation process of game-theoretic interaction.

For computer vision, the m-th order interaction I(m)
(i, j) measures the average game-theoretic in-

teraction effects between image patches i and j on all m image patch contexts. Take face recognition
as an example, we can consider patches i and j as two eyes on this face. Besides, we regard other
m visible image patches included on the face. The interaction effect and contribution between the
eye’s patches i and j toward the task depend on such m visible patches as the context, which is
measured as the aforementioned I(m)

(i, j). If I(m)
(i, j) > 0 , patches i and j show a positive

effect under m context. Accordingly, if I(m)
(i, j) < 0, we consideri and j have a negative effect

under m context. More importantly, interactions of low-order mainly reflect widely-shared local
texture and common visual concepts. The middle-order interactions are primarily responsible for
encoding discriminative high-level representations. However, the high-order ones are inclined to
let DNNs memorize the pattern of rare outliers and large-scale shape with intensive global inter-
actions, which can presumably over-fit our deep models (Deng et al., 2022; Cheng et al., 2021).
Consequently, the occurrence of excessively low- or high-order game-theoretic interaction in a deep
architecture may therefore be undesirable.

Formally, given an input image x with a set of n patches N = {1, . . . , n} (e.g., an image with n
pixels in total), the multi-order interaction I(m)

(i, j) can be calculated as:

I(m)
(i, j) = ES✓N\{i,j},|S|=m[�f(i, j, S)], (11)

where �f(i, j, S) = f(S [ {i, j}) � f(S [ {i}) � f(S [ {j}) + f(S). f(S) indicates the score
of output with patches in N \ S kept unchanged but replaced with the baseline value (Ancona
et al., 2019a), For example, a low-order interaction (e.g., m = 0.05n) means the relatively simple
collaboration between variables i, j under a small range of context, while a high-order interaction
(e.g., m = 0.95n) corresponds to the complex collaboration under a large range of context. Then,
we can measure the overall interaction complexity of deep neural networks (DNNs) by the relative
interaction strength J (m) of the encoded m-th order interaction:

J (m)
=

Ex2⌦Ei,j |I(m)
(i, j|x)|

E
m

0Ex2⌦Ei,j |I(m
0 )(i, j|x)|

, (12)

where ⌦ is the set of all samples and 0  m � n � 2. Note that J (m) is the average interaction
strength over all possible patch pairs of the input samples and indicates the distribution (area under

1https://github.com/chengtan9907/OpenSTL
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A.7 VIDEO PREDICTION ON MOVING MNIST
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which any 2D architecture can replace. Therefore, we can benchmark various architectures based
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Figure 1: (a) Five pixels (g, h, i, j, k) interact with each other, forming an edge pattern for classifi-
cation. (b) Representation bottleneck. A DNN is likely to encode low-order and high-order inter-
actions, but usually fails to learn middle-order interactions. (c) The cognition gap between DNNs
and humans. Humans extract little information from a few image patches (e.g., 5% patches). Also,
given almost all patches (e.g., 90% patches), people learn little new information from the additional
5% patches since the information is already redundant for human recognition. In comparison, the
DNN encodes most interactions when the DNN is given very few patches or most patches.

Multi-order interactions. In order to represent the interaction complexity mentioned in the rep-
resentation bottleneck, we use the multi-order interaction utility between variables i, j proposed by
Zhang et al. (2020). The interaction of the m-th order I(m)(i, j) measures the average interaction
utility between variables i, j on all contexts consisting of m variables. In this way, the order m
reflects the contextual complexity of the interaction. A low-order I(m)(i, j) measures the relatively
simple collaboration between variables i, j, and a few m contextual variables, while a high-order
I(m

0)(i, j) corresponds to the complex collaboration between i, j and m0 massive contextual vari-
ables, where m0 � m.

Moreover, we prove that the multi-order interaction is a trustworthy tool to analyze the representation
capacity of DNNs. Specifically, the output score of a DNN can be decomposed into utilities of
compositional multi-order interactions between different pairs of variables, i.e., model output =Pn�2

m=0

P
i,j2N,i 6=j w

(m)I(m)(i, j) +
P

i2N local utility of i + bias. For example, the inference
score of a face can be decomposed into the interaction utility between left and right eyes, between
mouth and nose, etc. Therefore, we can take the utility I(m)(i, j) as the underlying reason to explain
the DNN, because each interaction makes a compositional contribution to the output.

Representation bottleneck of DNNs. Surprisingly, the above decomposition of multi-order interac-
tions enables us to discover a representation bottleneck of DNNs. As Figure 1(b) shows, low-order
and high-order interaction utilities I(m)(i, j) usually have high absolute values, while middle-order
interaction utilities I(m)(i, j) usually have low absolute values. In other words, a DNN is more
likely to encode the interaction between variables i and j, when i, j interact with a few contextual
variables. Similarly, it is also easy for the DNN to learn the interaction, when i, j interact with most
contextual variables. However, it is difficult for the DNN to learn the interaction, when i, j cooperate
with a medium number of contextual variables. The difficulty of learning middle-order interactions
reflects a representation bottleneck of DNNs.

Cognitive gap between DNNs and humans. Such a representation bottleneck also indicates a
significant gap between the concepts encoded by DNNs and the visual cognition of humans. As
Figure 1(c) shows, people usually cannot extract meaningful information from a few image patches.
Besides, if people are given almost all patches, then the information is already too redundant and
inserting additional patches will bring in little new information. In contrast, the DNN encodes most
information, when the DNN is given only a few patches or is given most patches.

Theoretical proof. In this paper, we theoretically prove the mechanism that is responsible for the
representation bottleneck. Such proof also enables us to simulate the distribution of interactions of
different orders, which well matches the distribution of interactions in real applications.

Beyond the theoretical proof, another important issue is how to guide the learning of feature rep-
resentation in DNNs by learning interactions of specific orders. We propose two losses to en-
courage/penalize the DNN to make inferences by interactions of specific orders, thereby boost-
ing/preventing the learning of such interactions. Experimental results have validated the effective-
ness of the two losses. Next, we investigate the representation capacities of several DNNs which
encoded interactions of different orders. We find that the DNNs mainly encoding high-order interac-
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order m reflects the scale of the context involved in the game-theoretic interactions between pixels i
and j. Normalized by the average of interaction strength, the relative interaction strength J (m) with
m 2 (0, 1) measures the complexity of interactions encoded in DNNs. Notably, low-order interac-
tions tend to encode common or widely-shared local texture, and the high-order ones are inclined
to forcibly memorize the pattern of rare outliers (Deng et al., 2022; Cheng et al., 2021). As shown
in Fig. 3, existing DNNs are implicitly prone to excessively low- or high-order interactions while
suppressing the most expressive and versatile middle-order ones (Deng et al., 2022; Cheng et al.,
2021). Refer to Appendix B.1 for definitions and more details.

Figure 3: Distributions of the interac-
tion strength J (m) for Transformers and
ConvNets on ImageNet-1K with 224

2 res-
olutions and n = 14⇥ 14.

Multi-order Interaction for Architecture Design.
Existing deep architecture design is usually derived
from intuitive insights, lacking hierarchical theoretic
guidance. Multi-order interaction can serve as a ref-
erence that fits well with the already gained insights on
computer vision and further guides the ongoing quest.
For instance, the extremely high-order interactions en-
coded in ViTs (e.g., DeiT in Fig. 3) may stem from its
adaptive global-range self-attention mechanism. Its su-
perior robustness can be attributed to its excessive low-
order interactions, representing common and widely
shared local patterns. However, the absence of local-
ity priors still leaves ViTs lacking middle-order inter-
actions, which cannot be replaced by the low-order
ones. As for modern ConvNets (e.g., SLaK in Fig. 3),
despite the 51 ⇥ 51 kernel size, it still fails to en-
code enough expressive interactions (view more results
in Appendix B.1). Likewise, we argue that such a
dilemma may be attributed to the inappropriate com-
position of convolutional locality priors and global context injections (Treisman & Gelade, 1980;
Tuli et al., 2021; Li et al., 2023a). A naive combination of self-attention or convolutions can be in-
trinsically prone to the strong bias of global shape (Geirhos et al., 2021; Ding et al., 2022b) or local
texture (Hermann et al., 2020), infusing extreme-order interaction preference to models. In Mo-
gaNet, we aim to provide an architecture that can adaptively force the network to encode expressive

interactions that would have otherwise been ignored inherently.

4 METHODOLOGY

4.1 OVERVIEW OF MOGANET

Built upon modern ConvNets, we design a four-stage MogaNet architecture as illustrated in Fig. 2.
For stage i, the input image or feature is first fed into an embedding stem to regulate the resolutions
and embed into Ci dimensions. Assuming the input image in H⇥W resolutions, features of the four
stages are in H
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Figure 4: (a) Structure of spatial aggregation block Moga(·). (b) Structure of channel aggre-
gation block. (c) Analysis of channel MLP and the channel aggregation module. Based on
MogaNet-S, performances and model sizes of the raw channel MLP, MLP with SE block, and the
channel aggregation is compared with the MLP ratio of {2, 4, 6, 8} on ImageNet-1K.
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MogaNet\wo CA(.)\wo FD(.)\wo Gating 1: 0: 0 0: 0: 1

Figure 5: Grad-CAM visualization of ablations. 1: 0: 0 and
0: 0: 1 denote only using Cl or Ch for Multi-order DWConv
Layers in SA block. The models encoded extremely low-
(Cl) or high- (Ch) order interactions are sensitive to similar
regional textures (1: 0: 0) or excessive discriminative parts (0:
0: 1), not localizing precise semantic parts. Gating effectively
eliminates the disturbing contextual noise (\wo Gating).

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)

Baseline 76.6 4.75 1.01

SMixer

+Gating branch 77.3 5.09 1.07
+DW7⇥7 77.5 5.14 1.09
+Multi-order DW(·) 78.0 5.17 1.10
+FD(·) 78.3 5.18 1.10

CMixer +SE module 78.6 5.29 1.14
+CA(·) 79.0 5.20 1.10

Table 1: Ablation of designed mod-
ules on ImageNet-1K. The baseline
uses the non-linear projection and
DW5⇥5 as SMixer(·) and the vanilla
MLP as CMixer(·).

feature flows into Ni Moga Blocks, consisting of spatial and channel aggregation blocks (in Sec. 4.2
and 4.3), for further context aggregation. After the final output, GAP and a linear layer are added
for classification tasks. As for dense prediction tasks (He et al., 2017; Xiao et al., 2018b), the output
from four stages can be used through neck modules (Lin et al., 2017a; Kirillov et al., 2019).

4.2 MULTI-ORDER SPATIAL GATED AGGREGATION

As discussed in Sec. 3, DNNs with the incompatible composition of locality perception and con-
text aggregation can be implicitly prone to extreme-order game-theoretic interaction strengths while
suppressing the more robust and expressive middle-order ones (Li et al., 2022a; Pinto et al., 2022;
Deng et al., 2022). As shown in Fig. 5, the primary obstacle pertains to how to force the network
to encode the originally ignored expressive interactions and informative features. We first suppose
that the essential adaptive nature of attention in ViTs has not been well leveraged and grafted into
ConvNets. Thus, we propose spatial aggregation (SA) block as an instantiation of SMixer(·) to
learn representations of multi-order interactions in a unified design, as shown in Fig. 4a, consisting
of two cascaded components. We instantiate Eq. (2) as:

Z = X +Moga

⇣
FD

�
Norm(X)

�⌘
, (5)

where FD(·) indicates a feature decomposition module (FD) and Moga(·) denotes a multi-order
gated aggregation module comprising the gating F�(·) and context branch G (·).
Context Extraction. As a pure ConvNet structure, we extract multi-order features with both static

and adaptive locality perceptions. There are two complementary counterparts, fine-grained local
texture (low-order) and complex global shape (middle-order), which are instantiated by Conv1⇥1(·)
and GAP(·) respectively. To force the network against its implicitly inclined interaction strengths,
we design FD(·) to adaptively exclude the trivial (overlooked) interactions, defined as:

Y = Conv1⇥1(X), (6)

Z = GELU

⇣
Y + �s �

�
Y �GAP(Y )

�⌘
, (7)

where �s 2 RC⇥1 denotes a scaling factor initialized as zeros. By re-weighting the complemen-
tary interaction component Y � GAP(Y ), FD(·) also increases spatial feature diversities (Park &
Kim, 2022; Wang et al., 2022b). Then, we ensemble depth-wise convolutions (DWConv) to encode
multi-order features in the context branch of Moga(·). Unlike previous works that simply combine
DWConv with self-attentions to model local and global interactions (Zhang et al., 2022b; Pan et al.,
2022a; Si et al., 2022; Rao et al., 2022) , we employ three different DWConv layers with dilation
ratios d 2 {1, 2, 3} in parallel to capture low, middle, and high-order interactions: given the input
feature X 2 RC⇥HW , DW5⇥5,d=1 is first applied for low-order features; then, the output is fac-
torized into Xl 2 RCl⇥HW , Xm 2 RCm⇥HW , and Xh 2 RCh⇥HW along the channel dimension,
where Cl + Cm + Ch = C; afterward, Xm and Xh are assigned to DW5⇥5,d=2 and DW7⇥7,d=3,
respectively, while Xl serves as identical mapping; finally, the output of Xl, Xm, and Xh are con-
catenated to form multi-order contexts, YC = Concat(Yl,1:Cl , Ym, Yh). Notice that the proposed
FD(·) and multi-order DWConv layers only require a little extra computational overhead and pa-
rameters in comparison to DW7⇥7 used in ConvNeXt (Liu et al., 2022b), e.g., +multi-order and
+FD(·) increase 0.04M parameters and 0.01G FLOPS over DW7⇥7 as shown in Table 1.
Gated Aggregation. To adaptively aggregate the extracted feature from the context branch, we
employ SiLU (Elfwing et al., 2018) activation in the gating branch, i.e., x · Sigmoid(x), which
has been well-acknowledged as an advanced version of Sigmoid activation. As illustrated in Ap-
pendix C.1, we empirically show that SiLU in MogaNet exhibits both the gating effects as Sigmoid
and the stable training property. Taking the output from FD(·) as the input, we instantiate Eq. (4):
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Figure 5: Grad-CAM visualization of ablations. 1: 0: 0 and
0: 0: 1 denote only using Cl or Ch for Multi-order DWConv
Layers in SA block. The models encoded extremely low-
(Cl) or high- (Ch) order interactions are sensitive to similar
regional textures (1: 0: 0) or excessive discriminative parts (0:
0: 1), not localizing precise semantic parts. Gating effectively
eliminates the disturbing contextual noise (\wo Gating).

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)

Baseline 76.6 4.75 1.01

SMixer

+Gating branch 77.3 5.09 1.07
+DW7⇥7 77.5 5.14 1.09
+Multi-order DW(·) 78.0 5.17 1.10
+FD(·) 78.3 5.18 1.10

CMixer +SE module 78.6 5.29 1.14
+CA(·) 79.0 5.20 1.10

Table 1: Ablation of designed mod-
ules on ImageNet-1K. The baseline
uses the non-linear projection and
DW5⇥5 as SMixer(·) and the vanilla
MLP as CMixer(·).

feature flows into Ni Moga Blocks, consisting of spatial and channel aggregation blocks (in Sec. 4.2
and 4.3), for further context aggregation. After the final output, GAP and a linear layer are added
for classification tasks. As for dense prediction tasks (He et al., 2017; Xiao et al., 2018b), the output
from four stages can be used through neck modules (Lin et al., 2017a; Kirillov et al., 2019).

4.2 MULTI-ORDER SPATIAL GATED AGGREGATION

As discussed in Sec. 3, DNNs with the incompatible composition of locality perception and con-
text aggregation can be implicitly prone to extreme-order game-theoretic interaction strengths while
suppressing the more robust and expressive middle-order ones (Li et al., 2022a; Pinto et al., 2022;
Deng et al., 2022). As shown in Fig. 5, the primary obstacle pertains to how to force the network
to encode the originally ignored expressive interactions and informative features. We first suppose
that the essential adaptive nature of attention in ViTs has not been well leveraged and grafted into
ConvNets. Thus, we propose spatial aggregation (SA) block as an instantiation of SMixer(·) to
learn representations of multi-order interactions in a unified design, as shown in Fig. 4a, consisting
of two cascaded components. We instantiate Eq. (2) as:

Z = X +Moga
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Norm(X)
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, (5)

where FD(·) indicates a feature decomposition module (FD) and Moga(·) denotes a multi-order
gated aggregation module comprising the gating F�(·) and context branch G (·).
Context Extraction. As a pure ConvNet structure, we extract multi-order features with both static

and adaptive locality perceptions. There are two complementary counterparts, fine-grained local
texture (low-order) and complex global shape (middle-order), which are instantiated by Conv1⇥1(·)
and GAP(·) respectively. To force the network against its implicitly inclined interaction strengths,
we design FD(·) to adaptively exclude the trivial (overlooked) interactions, defined as:

Y = Conv1⇥1(X), (6)

Z = GELU
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, (7)

where �s 2 RC⇥1 denotes a scaling factor initialized as zeros. By re-weighting the complemen-
tary interaction component Y � GAP(Y ), FD(·) also increases spatial feature diversities (Park &
Kim, 2022; Wang et al., 2022b). Then, we ensemble depth-wise convolutions (DWConv) to encode
multi-order features in the context branch of Moga(·). Unlike previous works that simply combine
DWConv with self-attentions to model local and global interactions (Zhang et al., 2022b; Pan et al.,
2022a; Si et al., 2022; Rao et al., 2022) , we employ three different DWConv layers with dilation
ratios d 2 {1, 2, 3} in parallel to capture low, middle, and high-order interactions: given the input
feature X 2 RC⇥HW , DW5⇥5,d=1 is first applied for low-order features; then, the output is fac-
torized into Xl 2 RCl⇥HW , Xm 2 RCm⇥HW , and Xh 2 RCh⇥HW along the channel dimension,
where Cl + Cm + Ch = C; afterward, Xm and Xh are assigned to DW5⇥5,d=2 and DW7⇥7,d=3,
respectively, while Xl serves as identical mapping; finally, the output of Xl, Xm, and Xh are con-
catenated to form multi-order contexts, YC = Concat(Yl,1:Cl , Ym, Yh). Notice that the proposed
FD(·) and multi-order DWConv layers only require a little extra computational overhead and pa-
rameters in comparison to DW7⇥7 used in ConvNeXt (Liu et al., 2022b), e.g., +multi-order and
+FD(·) increase 0.04M parameters and 0.01G FLOPS over DW7⇥7 as shown in Table 1.
Gated Aggregation. To adaptively aggregate the extracted feature from the context branch, we
employ SiLU (Elfwing et al., 2018) activation in the gating branch, i.e., x · Sigmoid(x), which
has been well-acknowledged as an advanced version of Sigmoid activation. As illustrated in Ap-
pendix C.1, we empirically show that SiLU in MogaNet exhibits both the gating effects as Sigmoid
and the stable training property. Taking the output from FD(·) as the input, we instantiate Eq. (4):

5

Published as a conference paper at ICLR 2024

Z = SiLU
�
Conv1⇥1(X)

�
| {z }

F�

� SiLU
�
Conv1⇥1(YC)

�
| {z }

G 

, (8)

With the proposed SA blocks, MogaNet captures more middle-order interactions, as validated in
Fig. 3. The SA block produces discriminative multi-order representations with similar parameters
and FLOPs as DW7⇥7 in ConvNeXt, which is well beyond the reach of existing methods without
the cost-consuming self-attentions.

4.3 MULTI-ORDER CHANNEL REALLOCATION
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Figure 6: Channel energy ranks and channel
saliency maps (CSM) (Kong et al., 2022) with
or without our CA block based on MogaNet-S.
The energy reflects the importance of the chan-
nel, while the highlighted regions of CSMs are
the activated spatial features of each channel.

Prevalent architectures, as illustrated in Sec. 2,
perform channel-mixing CMixer(·) mainly by
two linear projections, e.g., 2-layer channel-
wise MLP (Dosovitskiy et al., 2021; Liu et al.,
2021; Tolstikhin et al., 2021) with a expand ra-
tio r or the MLP with a 3 ⇥ 3 DWConv in be-
tween (Wang et al., 2022c; Pan et al., 2022b;a).
Due to the information redundancy cross chan-
nels (Woo et al., 2018; Cao et al., 2019; Tan &
Le, 2019; Wang et al., 2020), vanilla MLP re-
quires a number of parameters (r default to 4
or 8) to achieve expected performance, show-
ing low computational efficiency as plotted in
Fig. 4c. To address this issue, most current meth-
ods directly insert a channel enhancement mod-
ule, e.g., SE module (Hu et al., 2018), into MLP.
Unlike these designs requiring additional MLP
bottleneck, motivated by FD(·), we introduce a
lightweight channel aggregation module CA(·)
to adaptive reallocate channel-wise features in
high-dimensional hidden spaces and further extend it to a channel aggregation (CA) block. As
shown in Fig. 4b, we rewrite Eq. (3) for our CA block as:

Y = GELU

⇣
DW3⇥3

�
Conv1⇥1(Norm(X))

�⌘
,

Z = Conv1⇥1

�
CA(Y )

�
+X.

(9)

Concretely, CA(·) is implemented by a channel-reducing projection Wr : RC⇥HW ! R1⇥HW and
GELU to gather and reallocate channel-wise information:

CA(X) = X + �c �
�
X �GELU(XWr)

�
, (10)

where �c is the channel-wise scaling factor initialized as zeros. It reallocates the channel-wise
feature with the complementary interactions (X � GELU(XWr)). As shown in Fig. 7, CA(·) en-
hances originally overlooked game-theoretic interactions. Fig. 4c and Fig. 6 verify the effectiveness
of CA(·) compared with vanilla MLP and MLP with SE module in channel-wise effiency and repre-
sentation ability. Despite some improvements to the baseline, the MLP w/ SE module still requires
large MLP ratios (e.g., r = 6) to achieve expected performance while bringing extra parameters and
overhead. Yet, our CA(·) with r = 4 brings 0.6% gain over the baseline at a small extra cost (0.04M
extra parameters & 0.01G FLOPs) while achieving the same performance as the baseline with r = 8.

4.4 IMPLEMENTATION DETAILS

Following the network design style of ConvNets (Liu et al., 2022b), we scale up MogaNet for six
model sizes (X-Tiny, Tiny, Small, Base, Large, and X-Large) via stacking the different number
of spatial and channel aggregation blocks at each stage, which has similar numbers of parameters
as RegNet (Radosavovic et al., 2020) variants. Network configurations and hyper-parameters are
detailed in Table A1. FLOPs and throughputs are analyzed in Appendix C.3. We set the channels of
the multi-order DWConv layers to Cl : Cm : Ch = 1:3:4 (see Appendix C.2). Similar to (Touvron
et al., 2021c; Li et al., 2022a;c), the first embedding stem in MogaNet is designed as two stacked
3⇥3 convolution layers with the stride of 2 while adopting the single-layer version for embedding
stems in other three stages. We select GELU (Hendrycks & Gimpel, 2016) as the common activation
function and only use SiLU in the Moga module as Eq. (8).
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S (Yuan et al., 2021b), Twins-S (Chu et al., 2021), and Swin (Liu et al., 2021), and ConvNets,
including ResNet-50 (He et al., 2016) and ConvNeXt-T (Liu et al., 2022b), on ImageNet-1K in
Fig. A4. Due to the self-attention mechanism, the pure Transformers architectures (DeiT-S and
T2T-ViT-S) show more refined activation maps than ConvNets, but they also activate some irrele-
vant parts. Combined with the design of local windows, local attention architectures (Twins-S and
Swin-T) can locate the full semantic objects. Results of previous ConvNets can roughly localize the
semantic target but might contain some background regions. The activation parts of our proposed
MogaNet-S are more similar to local attention architectures than previous ConvNets, which are more
gathered on the semantic objects.

C MORE ABLATION AND ANALYSIS RESULTS

In addition to Sec. 5.3, we further conduct more ablation and analysis of our proposed MogaNet on
ImageNet-1K. We adopt the same experimental settings as Sec. 1.

C.1 ABLATION OF ACTIVATION FUNCTIONS

We conduct the ablation of activation functions used in the proposed multi-order gated aggregation
module on ImageNet-1K. Table A4 shows that using SiLU (Elfwing et al., 2018) activation for both
branches achieves the best performance. Similar results were also found in Transformers, e.g., GLU
variants with SiLU or GELU (Hendrycks & Gimpel, 2016) yield better performances than using
Sigmoid or Tanh activation functions (Shazeer, 2020; Hua et al., 2022). We assume that SiLU is the
most suitable activation because it owns both the property of Sigmoid (gating effects) and GELU
(training friendly), which is defined as x · Sigmoid(x).

Top-1 Context branch
Acc (%) None GELU SiLU
None 76.3 76.7 76.7

Gating Sigmoid 76.8 77.0 76.9
branch GELU 76.7 76.8 77.0

SiLU 76.9 77.1 77.2

Table A4: Ablation of various
activation functions for the gat-
ing and context branches in the
proposed Moga(·) module, which
SiLU achieves the best perfor-
mance in two branches.

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)

Baseline (+Gating branch) 77.2 5.09 1.070
DW7⇥7 77.4 5.14 1.094
DW5⇥5,d=1 +DW7⇥7,d=3 77.5 5.15 1.112
DW5⇥5,d=1 +DW5⇥5,d=2 +DW7⇥7,d=3 77.5 5.17 1.185
+Multi-order, Cl : Cm : Ch = 1 : 0 : 3 77.5 5.17 1.099
+Multi-order, Cl : Cm : Ch = 0 : 1 : 1 77.6 5.17 1.103
+Multi-order, Cl : Cm : Ch = 1 : 6 : 9 77.7 5.17 1.104
+Multi-order, Cl : Cm : Ch = 1 : 3 : 4 77.8 5.17 1.102

Table A5: Ablation of multi-order DWConv layers in the pro-
posed Moga(·). The baseline adopts the MogaNet framework
using the non-linear projection, DW5⇥5, and the SiLU gating
branch as SMixer(·) and using the vanilla MLP as CMixer(·).

C.2 ABLATION OF MULTI-ORDER DWCONV LAYERS

In addition to Sec. 4.2 and Sec. 5.3, we also analyze the multi-order depth-wise convolution (DW-
Conv) layers as the static regionality perception in the multi-order aggregation module Moga(·) on
ImageNet-1K. As shown in Table A5, we analyze the channel configuration of three parallel dilated
DWConv layers: DW5⇥5,d=1, DW5⇥5,d=2, and DW7⇥7,d=3 with the channels of Cl, Cm, Ch. we
first compare the performance of serial DWConv layers (e.g., DW5⇥5,d=1+DW7⇥7,d=3) and paral-
lel DWConv layers. We find that the parallel design can achieve the same performance with fewer
computational overloads because the DWConv kernel is equally applied to all channels. When we
adopt three DWConv layers, the proposed parallel design reduces Cl + Ch and Cl + Cm times
computations of DW5⇥5,d=2 and DW5⇥5,d=2 in comparison to the serial stack of these DWConv
layers. Then, we empirically explore the optimal configuration of the three channels. We find that
Cl : Cm : Ch = 1: 3: 4 yields the best performance, which well balances the small, medium, and
large DWConv kernels to learn low, middle, and high-order contextual representations. We calcu-
late and discuss the FLOPs of the proposed three DWConv layers in the next subsection to verify
the efficiency. Similar conclusions are also found in relevant designs (Pan et al., 2022a; Si et al.,
2022; Rao et al., 2022), where global context aggregations take the majority (e.g., 1

2 ⇠ 3
4 channels

or context components). We also verify the parallel design with the optimal configuration based
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vant parts. Combined with the design of local windows, local attention architectures (Twins-S and
Swin-T) can locate the full semantic objects. Results of previous ConvNets can roughly localize the
semantic target but might contain some background regions. The activation parts of our proposed
MogaNet-S are more similar to local attention architectures than previous ConvNets, which are more
gathered on the semantic objects.
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In addition to Sec. 5.3, we further conduct more ablation and analysis of our proposed MogaNet on
ImageNet-1K. We adopt the same experimental settings as Sec. 1.

C.1 ABLATION OF ACTIVATION FUNCTIONS

We conduct the ablation of activation functions used in the proposed multi-order gated aggregation
module on ImageNet-1K. Table A4 shows that using SiLU (Elfwing et al., 2018) activation for both
branches achieves the best performance. Similar results were also found in Transformers, e.g., GLU
variants with SiLU or GELU (Hendrycks & Gimpel, 2016) yield better performances than using
Sigmoid or Tanh activation functions (Shazeer, 2020; Hua et al., 2022). We assume that SiLU is the
most suitable activation because it owns both the property of Sigmoid (gating effects) and GELU
(training friendly), which is defined as x · Sigmoid(x).
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Gating Sigmoid 76.8 77.0 76.9
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Table A5: Ablation of multi-order DWConv layers in the pro-
posed Moga(·). The baseline adopts the MogaNet framework
using the non-linear projection, DW5⇥5, and the SiLU gating
branch as SMixer(·) and using the vanilla MLP as CMixer(·).
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In addition to Sec. 4.2 and Sec. 5.3, we also analyze the multi-order depth-wise convolution (DW-
Conv) layers as the static regionality perception in the multi-order aggregation module Moga(·) on
ImageNet-1K. As shown in Table A5, we analyze the channel configuration of three parallel dilated
DWConv layers: DW5⇥5,d=1, DW5⇥5,d=2, and DW7⇥7,d=3 with the channels of Cl, Cm, Ch. we
first compare the performance of serial DWConv layers (e.g., DW5⇥5,d=1+DW7⇥7,d=3) and paral-
lel DWConv layers. We find that the parallel design can achieve the same performance with fewer
computational overloads because the DWConv kernel is equally applied to all channels. When we
adopt three DWConv layers, the proposed parallel design reduces Cl + Ch and Cl + Cm times
computations of DW5⇥5,d=2 and DW5⇥5,d=2 in comparison to the serial stack of these DWConv
layers. Then, we empirically explore the optimal configuration of the three channels. We find that
Cl : Cm : Ch = 1: 3: 4 yields the best performance, which well balances the small, medium, and
large DWConv kernels to learn low, middle, and high-order contextual representations. We calcu-
late and discuss the FLOPs of the proposed three DWConv layers in the next subsection to verify
the efficiency. Similar conclusions are also found in relevant designs (Pan et al., 2022a; Si et al.,
2022; Rao et al., 2022), where global context aggregations take the majority (e.g., 1

2 ⇠ 3
4 channels

or context components). We also verify the parallel design with the optimal configuration based
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MogaNet\wo CA(.)\wo FD(.)\wo Gating 1: 0: 0 0: 0: 1

Figure 5: Grad-CAM visualization of ablations. 1: 0: 0 and
0: 0: 1 denote only using Cl or Ch for Multi-order DWConv
Layers in SA block. The models encoded extremely low-
(Cl) or high- (Ch) order interactions are sensitive to similar
regional textures (1: 0: 0) or excessive discriminative parts (0:
0: 1), not localizing precise semantic parts. Gating effectively
eliminates the disturbing contextual noise (\wo Gating).

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)

Baseline 76.6 4.75 1.01

SMixer

+Gating branch 77.3 5.09 1.07
+DW7⇥7 77.5 5.14 1.09
+Multi-order DW(·) 78.0 5.17 1.10
+FD(·) 78.3 5.18 1.10

CMixer +SE module 78.6 5.29 1.14
+CA(·) 79.0 5.20 1.10

Table 1: Ablation of designed mod-
ules on ImageNet-1K. The baseline
uses the non-linear projection and
DW5⇥5 as SMixer(·) and the vanilla
MLP as CMixer(·).

feature flows into Ni Moga Blocks, consisting of spatial and channel aggregation blocks (in Sec. 4.2
and 4.3), for further context aggregation. After the final output, GAP and a linear layer are added
for classification tasks. As for dense prediction tasks (He et al., 2017; Xiao et al., 2018b), the output
from four stages can be used through neck modules (Lin et al., 2017a; Kirillov et al., 2019).

4.2 MULTI-ORDER SPATIAL GATED AGGREGATION

As discussed in Sec. 3, DNNs with the incompatible composition of locality perception and con-
text aggregation can be implicitly prone to extreme-order game-theoretic interaction strengths while
suppressing the more robust and expressive middle-order ones (Li et al., 2022a; Pinto et al., 2022;
Deng et al., 2022). As shown in Fig. 5, the primary obstacle pertains to how to force the network
to encode the originally ignored expressive interactions and informative features. We first suppose
that the essential adaptive nature of attention in ViTs has not been well leveraged and grafted into
ConvNets. Thus, we propose spatial aggregation (SA) block as an instantiation of SMixer(·) to
learn representations of multi-order interactions in a unified design, as shown in Fig. 4a, consisting
of two cascaded components. We instantiate Eq. (2) as:

Z = X +Moga

⇣
FD

�
Norm(X)

�⌘
, (5)

where FD(·) indicates a feature decomposition module (FD) and Moga(·) denotes a multi-order
gated aggregation module comprising the gating F�(·) and context branch G (·).
Context Extraction. As a pure ConvNet structure, we extract multi-order features with both static

and adaptive locality perceptions. There are two complementary counterparts, fine-grained local
texture (low-order) and complex global shape (middle-order), which are instantiated by Conv1⇥1(·)
and GAP(·) respectively. To force the network against its implicitly inclined interaction strengths,
we design FD(·) to adaptively exclude the trivial (overlooked) interactions, defined as:

Y = Conv1⇥1(X), (6)

Z = GELU

⇣
Y + �s �

�
Y �GAP(Y )

�⌘
, (7)

where �s 2 RC⇥1 denotes a scaling factor initialized as zeros. By re-weighting the complemen-
tary interaction component Y � GAP(Y ), FD(·) also increases spatial feature diversities (Park &
Kim, 2022; Wang et al., 2022b). Then, we ensemble depth-wise convolutions (DWConv) to encode
multi-order features in the context branch of Moga(·). Unlike previous works that simply combine
DWConv with self-attentions to model local and global interactions (Zhang et al., 2022b; Pan et al.,
2022a; Si et al., 2022; Rao et al., 2022) , we employ three different DWConv layers with dilation
ratios d 2 {1, 2, 3} in parallel to capture low, middle, and high-order interactions: given the input
feature X 2 RC⇥HW , DW5⇥5,d=1 is first applied for low-order features; then, the output is fac-
torized into Xl 2 RCl⇥HW , Xm 2 RCm⇥HW , and Xh 2 RCh⇥HW along the channel dimension,
where Cl + Cm + Ch = C; afterward, Xm and Xh are assigned to DW5⇥5,d=2 and DW7⇥7,d=3,
respectively, while Xl serves as identical mapping; finally, the output of Xl, Xm, and Xh are con-
catenated to form multi-order contexts, YC = Concat(Yl,1:Cl , Ym, Yh). Notice that the proposed
FD(·) and multi-order DWConv layers only require a little extra computational overhead and pa-
rameters in comparison to DW7⇥7 used in ConvNeXt (Liu et al., 2022b), e.g., +multi-order and
+FD(·) increase 0.04M parameters and 0.01G FLOPS over DW7⇥7 as shown in Table 1.
Gated Aggregation. To adaptively aggregate the extracted feature from the context branch, we
employ SiLU (Elfwing et al., 2018) activation in the gating branch, i.e., x · Sigmoid(x), which
has been well-acknowledged as an advanced version of Sigmoid activation. As illustrated in Ap-
pendix C.1, we empirically show that SiLU in MogaNet exhibits both the gating effects as Sigmoid
and the stable training property. Taking the output from FD(·) as the input, we instantiate Eq. (4):

5

[1] MogaNet: Multi-order Gated Aggregation Network. ICLR, 2024.
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Figure 5: Grad-CAM visualization of ablations. 1: 0: 0 and
0: 0: 1 denote only using Cl or Ch for Multi-order DWConv
Layers in SA block. The models encoded extremely low-
(Cl) or high- (Ch) order interactions are sensitive to similar
regional textures (1: 0: 0) or excessive discriminative parts (0:
0: 1), not localizing precise semantic parts. Gating effectively
eliminates the disturbing contextual noise (\wo Gating).

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)

Baseline 76.6 4.75 1.01

SMixer

+Gating branch 77.3 5.09 1.07
+DW7⇥7 77.5 5.14 1.09
+Multi-order DW(·) 78.0 5.17 1.10
+FD(·) 78.3 5.18 1.10

CMixer +SE module 78.6 5.29 1.14
+CA(·) 79.0 5.20 1.10

Table 1: Ablation of designed mod-
ules on ImageNet-1K. The baseline
uses the non-linear projection and
DW5⇥5 as SMixer(·) and the vanilla
MLP as CMixer(·).

feature flows into Ni Moga Blocks, consisting of spatial and channel aggregation blocks (in Sec. 4.2
and 4.3), for further context aggregation. After the final output, GAP and a linear layer are added
for classification tasks. As for dense prediction tasks (He et al., 2017; Xiao et al., 2018b), the output
from four stages can be used through neck modules (Lin et al., 2017a; Kirillov et al., 2019).

4.2 MULTI-ORDER SPATIAL GATED AGGREGATION

As discussed in Sec. 3, DNNs with the incompatible composition of locality perception and con-
text aggregation can be implicitly prone to extreme-order game-theoretic interaction strengths while
suppressing the more robust and expressive middle-order ones (Li et al., 2022a; Pinto et al., 2022;
Deng et al., 2022). As shown in Fig. 5, the primary obstacle pertains to how to force the network
to encode the originally ignored expressive interactions and informative features. We first suppose
that the essential adaptive nature of attention in ViTs has not been well leveraged and grafted into
ConvNets. Thus, we propose spatial aggregation (SA) block as an instantiation of SMixer(·) to
learn representations of multi-order interactions in a unified design, as shown in Fig. 4a, consisting
of two cascaded components. We instantiate Eq. (2) as:

Z = X +Moga

⇣
FD

�
Norm(X)

�⌘
, (5)

where FD(·) indicates a feature decomposition module (FD) and Moga(·) denotes a multi-order
gated aggregation module comprising the gating F�(·) and context branch G (·).
Context Extraction. As a pure ConvNet structure, we extract multi-order features with both static

and adaptive locality perceptions. There are two complementary counterparts, fine-grained local
texture (low-order) and complex global shape (middle-order), which are instantiated by Conv1⇥1(·)
and GAP(·) respectively. To force the network against its implicitly inclined interaction strengths,
we design FD(·) to adaptively exclude the trivial (overlooked) interactions, defined as:

Y = Conv1⇥1(X), (6)

Z = GELU

⇣
Y + �s �

�
Y �GAP(Y )

�⌘
, (7)

where �s 2 RC⇥1 denotes a scaling factor initialized as zeros. By re-weighting the complemen-
tary interaction component Y � GAP(Y ), FD(·) also increases spatial feature diversities (Park &
Kim, 2022; Wang et al., 2022b). Then, we ensemble depth-wise convolutions (DWConv) to encode
multi-order features in the context branch of Moga(·). Unlike previous works that simply combine
DWConv with self-attentions to model local and global interactions (Zhang et al., 2022b; Pan et al.,
2022a; Si et al., 2022; Rao et al., 2022) , we employ three different DWConv layers with dilation
ratios d 2 {1, 2, 3} in parallel to capture low, middle, and high-order interactions: given the input
feature X 2 RC⇥HW , DW5⇥5,d=1 is first applied for low-order features; then, the output is fac-
torized into Xl 2 RCl⇥HW , Xm 2 RCm⇥HW , and Xh 2 RCh⇥HW along the channel dimension,
where Cl + Cm + Ch = C; afterward, Xm and Xh are assigned to DW5⇥5,d=2 and DW7⇥7,d=3,
respectively, while Xl serves as identical mapping; finally, the output of Xl, Xm, and Xh are con-
catenated to form multi-order contexts, YC = Concat(Yl,1:Cl , Ym, Yh). Notice that the proposed
FD(·) and multi-order DWConv layers only require a little extra computational overhead and pa-
rameters in comparison to DW7⇥7 used in ConvNeXt (Liu et al., 2022b), e.g., +multi-order and
+FD(·) increase 0.04M parameters and 0.01G FLOPS over DW7⇥7 as shown in Table 1.
Gated Aggregation. To adaptively aggregate the extracted feature from the context branch, we
employ SiLU (Elfwing et al., 2018) activation in the gating branch, i.e., x · Sigmoid(x), which
has been well-acknowledged as an advanced version of Sigmoid activation. As illustrated in Ap-
pendix C.1, we empirically show that SiLU in MogaNet exhibits both the gating effects as Sigmoid
and the stable training property. Taking the output from FD(·) as the input, we instantiate Eq. (4):
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[1] Reflash dropout in image supe-resolution. CVPR, 2022.
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With the proposed SA blocks, MogaNet captures more middle-order interactions, as validated in
Fig. 3. The SA block produces discriminative multi-order representations with similar parameters
and FLOPs as DW7⇥7 in ConvNeXt, which is well beyond the reach of existing methods without
the cost-consuming self-attentions.

4.3 MULTI-ORDER CHANNEL REALLOCATION
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Figure 6: Channel energy ranks and channel
saliency maps (CSM) (Kong et al., 2022) with
or without our CA block based on MogaNet-S.
The energy reflects the importance of the chan-
nel, while the highlighted regions of CSMs are
the activated spatial features of each channel.

Prevalent architectures, as illustrated in Sec. 2,
perform channel-mixing CMixer(·) mainly by
two linear projections, e.g., 2-layer channel-
wise MLP (Dosovitskiy et al., 2021; Liu et al.,
2021; Tolstikhin et al., 2021) with a expand ra-
tio r or the MLP with a 3 ⇥ 3 DWConv in be-
tween (Wang et al., 2022c; Pan et al., 2022b;a).
Due to the information redundancy cross chan-
nels (Woo et al., 2018; Cao et al., 2019; Tan &
Le, 2019; Wang et al., 2020), vanilla MLP re-
quires a number of parameters (r default to 4
or 8) to achieve expected performance, show-
ing low computational efficiency as plotted in
Fig. 4c. To address this issue, most current meth-
ods directly insert a channel enhancement mod-
ule, e.g., SE module (Hu et al., 2018), into MLP.
Unlike these designs requiring additional MLP
bottleneck, motivated by FD(·), we introduce a
lightweight channel aggregation module CA(·)
to adaptive reallocate channel-wise features in
high-dimensional hidden spaces and further extend it to a channel aggregation (CA) block. As
shown in Fig. 4b, we rewrite Eq. (3) for our CA block as:

Y = GELU

⇣
DW3⇥3

�
Conv1⇥1(Norm(X))

�⌘
,

Z = Conv1⇥1

�
CA(Y )

�
+X.

(9)

Concretely, CA(·) is implemented by a channel-reducing projection Wr : RC⇥HW ! R1⇥HW and
GELU to gather and reallocate channel-wise information:

CA(X) = X + �c �
�
X �GELU(XWr)

�
, (10)

where �c is the channel-wise scaling factor initialized as zeros. It reallocates the channel-wise
feature with the complementary interactions (X � GELU(XWr)). As shown in Fig. 7, CA(·) en-
hances originally overlooked game-theoretic interactions. Fig. 4c and Fig. 6 verify the effectiveness
of CA(·) compared with vanilla MLP and MLP with SE module in channel-wise effiency and repre-
sentation ability. Despite some improvements to the baseline, the MLP w/ SE module still requires
large MLP ratios (e.g., r = 6) to achieve expected performance while bringing extra parameters and
overhead. Yet, our CA(·) with r = 4 brings 0.6% gain over the baseline at a small extra cost (0.04M
extra parameters & 0.01G FLOPs) while achieving the same performance as the baseline with r = 8.

4.4 IMPLEMENTATION DETAILS

Following the network design style of ConvNets (Liu et al., 2022b), we scale up MogaNet for six
model sizes (X-Tiny, Tiny, Small, Base, Large, and X-Large) via stacking the different number
of spatial and channel aggregation blocks at each stage, which has similar numbers of parameters
as RegNet (Radosavovic et al., 2020) variants. Network configurations and hyper-parameters are
detailed in Table A1. FLOPs and throughputs are analyzed in Appendix C.3. We set the channels of
the multi-order DWConv layers to Cl : Cm : Ch = 1:3:4 (see Appendix C.2). Similar to (Touvron
et al., 2021c; Li et al., 2022a;c), the first embedding stem in MogaNet is designed as two stacked
3⇥3 convolution layers with the stride of 2 while adopting the single-layer version for embedding
stems in other three stages. We select GELU (Hendrycks & Gimpel, 2016) as the common activation
function and only use SiLU in the Moga module as Eq. (8).
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With the proposed SA blocks, MogaNet captures more middle-order interactions, as validated in
Fig. 3. The SA block produces discriminative multi-order representations with similar parameters
and FLOPs as DW7⇥7 in ConvNeXt, which is well beyond the reach of existing methods without
the cost-consuming self-attentions.
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Prevalent architectures, as illustrated in Sec. 2,
perform channel-mixing CMixer(·) mainly by
two linear projections, e.g., 2-layer channel-
wise MLP (Dosovitskiy et al., 2021; Liu et al.,
2021; Tolstikhin et al., 2021) with a expand ra-
tio r or the MLP with a 3 ⇥ 3 DWConv in be-
tween (Wang et al., 2022c; Pan et al., 2022b;a).
Due to the information redundancy cross chan-
nels (Woo et al., 2018; Cao et al., 2019; Tan &
Le, 2019; Wang et al., 2020), vanilla MLP re-
quires a number of parameters (r default to 4
or 8) to achieve expected performance, show-
ing low computational efficiency as plotted in
Fig. 4c. To address this issue, most current meth-
ods directly insert a channel enhancement mod-
ule, e.g., SE module (Hu et al., 2018), into MLP.
Unlike these designs requiring additional MLP
bottleneck, motivated by FD(·), we introduce a
lightweight channel aggregation module CA(·)
to adaptive reallocate channel-wise features in
high-dimensional hidden spaces and further extend it to a channel aggregation (CA) block. As
shown in Fig. 4b, we rewrite Eq. (3) for our CA block as:

Y = GELU

⇣
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Concretely, CA(·) is implemented by a channel-reducing projection Wr : RC⇥HW ! R1⇥HW and
GELU to gather and reallocate channel-wise information:

CA(X) = X + �c �
�
X �GELU(XWr)

�
, (10)

where �c is the channel-wise scaling factor initialized as zeros. It reallocates the channel-wise
feature with the complementary interactions (X � GELU(XWr)). As shown in Fig. 7, CA(·) en-
hances originally overlooked game-theoretic interactions. Fig. 4c and Fig. 6 verify the effectiveness
of CA(·) compared with vanilla MLP and MLP with SE module in channel-wise effiency and repre-
sentation ability. Despite some improvements to the baseline, the MLP w/ SE module still requires
large MLP ratios (e.g., r = 6) to achieve expected performance while bringing extra parameters and
overhead. Yet, our CA(·) with r = 4 brings 0.6% gain over the baseline at a small extra cost (0.04M
extra parameters & 0.01G FLOPs) while achieving the same performance as the baseline with r = 8.

4.4 IMPLEMENTATION DETAILS

Following the network design style of ConvNets (Liu et al., 2022b), we scale up MogaNet for six
model sizes (X-Tiny, Tiny, Small, Base, Large, and X-Large) via stacking the different number
of spatial and channel aggregation blocks at each stage, which has similar numbers of parameters
as RegNet (Radosavovic et al., 2020) variants. Network configurations and hyper-parameters are
detailed in Table A1. FLOPs and throughputs are analyzed in Appendix C.3. We set the channels of
the multi-order DWConv layers to Cl : Cm : Ch = 1:3:4 (see Appendix C.2). Similar to (Touvron
et al., 2021c; Li et al., 2022a;c), the first embedding stem in MogaNet is designed as two stacked
3⇥3 convolution layers with the stride of 2 while adopting the single-layer version for embedding
stems in other three stages. We select GELU (Hendrycks & Gimpel, 2016) as the common activation
function and only use SiLU in the Moga module as Eq. (8).
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MogaNet: ImageNet Classification

Light weight (3-10M)
Published as a conference paper at ICLR 2024

Architecture Date Type Image Param. FLOPs Top-1
Size (M) (G) Acc (%)

ResNet-18 CVPR’2016 C 224
2 11.7 1.80 71.5

ShuffleNetV2 2⇥ ECCV’2018 C 224
2 5.5 0.60 75.4

EfficientNet-B0 ICML’2019 C 224
2 5.3 0.39 77.1

RegNetY-800MF CVPR’2020 C 224
2 6.3 0.80 76.3

DeiT-T† ICML’2021 T 224
2 5.7 1.08 74.1

PVT-T ICCV’2021 T 224
2 13.2 1.60 75.1

T2T-ViT-7 ICCV’2021 T 224
2 4.3 1.20 71.7

ViT-C NIPS’2021 T 224
2 4.6 1.10 75.3

SReT-TDistill ECCV’2022 T 224
2 4.8 1.10 77.6

PiT-Ti ICCV’2021 H 224
2 4.9 0.70 74.6

LeViT-S ICCV’2021 H 224
2 7.8 0.31 76.6

CoaT-Lite-T ICCV’2021 H 224
2 5.7 1.60 77.5

Swin-1G ICCV’2021 H 224
2 7.3 1.00 77.3

MobileViT-S ICLR’2022 H 256
2 5.6 4.02 78.4

MobileFormer-294M CVPR’2022 H 224
2 11.4 0.59 77.9

ConvNext-XT CVPR’2022 C 224
2 7.4 0.60 77.5

VAN-B0 CVMJ’2023 C 224
2 4.1 0.88 75.4

ParC-Net-S ECCV’2022 C 256
2 5.0 3.48 78.6

MogaNet-XT Ours C 256
2 3.0 1.04 77.2

MogaNet-T Ours C 224
2 5.2 1.10 79.0

MogaNet-T§ Ours C 256
2 5.2 1.44 80.0

Table 2: IN-1K classification with lightweight
models. § denotes the refined training scheme.
Architecture Date Type Image Param. FLOPs Top-1

Size (M) (G) Acc (%)
Deit-S ICML’2021 T 224

2 22 4.6 79.8
Swin-T ICCV’2021 T 224

2 28 4.5 81.3
CSWin-T CVPR’2022 T 224

2 23 4.3 82.8
LITV2-S NIPS’2022 T 224

2 28 3.7 82.0
CoaT-S ICCV’2021 H 224

2 22 12.6 82.1
CoAtNet-0 NIPS’2021 H 224

2 25 4.2 82.7
UniFormer-S ICLR’2022 H 224

2 22 3.6 82.9
RegNetY-4GF† CVPR’2020 C 224

2 21 4.0 81.5
ConvNeXt-T CVPR’2022 C 224

2 29 4.5 82.1
SLaK-T ICLR’2023 C 224

2 30 5.0 82.5
HorNet-T7⇥7 NIPS’2022 C 224

2 22 4.0 82.8
MogaNet-S Ours C 224

2 25 5.0 83.4
Swin-S ICCV’2021 T 224

2 50 8.7 83.0
Focal-S NIPS’2021 T 224

2 51 9.1 83.6
CSWin-S CVPR’2022 T 224

2 35 6.9 83.6
LITV2-M NIPS’2022 T 224

2 49 7.5 83.3
CoaT-M ICCV’2021 H 224

2 45 9.8 83.6
CoAtNet-1 NIPS’2021 H 224

2 42 8.4 83.3
UniFormer-B ICLR’2022 H 224

2 50 8.3 83.9
FAN-B-Hybrid ICML’2022 H 224

2 50 11.3 83.9
EfficientNet-B6 ICML’2019 C 528

2 43 19.0 84.0
RegNetY-8GF† CVPR’2020 C 224

2 39 8.1 82.2
ConvNeXt-S CVPR’2022 C 224

2 50 8.7 83.1
FocalNet-S (LRF) NIPS’2022 C 224

2 50 8.7 83.5
HorNet-S7⇥7 NIPS’2022 C 224

2 50 8.8 84.0
SLaK-S ICLR’2023 C 224

2 55 9.8 83.8
MogaNet-B Ours C 224

2 44 9.9 84.3
DeiT-B ICML’2021 T 224

2 86 17.5 81.8
Swin-B ICCV’2021 T 224

2 89 15.4 83.5
Focal-B NIPS’2021 T 224

2 90 16.4 84.0
CSWin-B CVPR’2022 T 224

2 78 15.0 84.2
DeiT III-B ECCV’2022 T 224

2 87 18.0 83.8
BoTNet-T7 CVPR’2021 H 256

2 79 19.3 84.2
CoAtNet-2 NIPS’2021 H 224

2 75 15.7 84.1
FAN-B-Hybrid ICML’2022 H 224

2 77 16.9 84.3
RegNetY-16GF CVPR’2020 C 224

2 84 16.0 82.9
ConvNeXt-B CVPR’2022 C 224

2 89 15.4 83.8
RepLKNet-31B CVPR’2022 C 224

2 79 15.3 83.5
FocalNet-B (LRF) NIPS’2022 C 224

2 89 15.4 83.9
HorNet-B7⇥7 NIPS’2022 C 224

2 87 15.6 84.3
SLaK-B ICLR’2023 C 224

2 95 17.1 84.0
MogaNet-L Ours C 224

2 83 15.9 84.7
Swin-L‡ ICCV’2021 T 384

2 197 104 87.3
DeiT III-L‡ ECCV’2022 T 384

2 304 191 87.7
CoAtNet-3‡ NIPS’2021 H 384

2 168 107 87.6
RepLKNet-31L‡ CVPR’2022 C 384

2 172 96 86.6
ConvNeXt-L CVPR’2022 C 224

2 198 34.4 84.3
ConvNeXt-L‡ CVPR’2022 C 384

2 198 101 87.5
ConvNeXt-XL‡ CVPR’2022 C 384

2 350 179 87.8
HorNet-L‡ NIPS’2022 C 384

2 202 102 87.7
MogaNet-XL Ours C 224

2 181 34.5 85.1
MogaNet-XL‡ Ours C 384

2 181 102 87.8

Table 3: IN-1K classification performance with
scaling-up models. ‡ denotes the model is pre-
trained on IN-21K and fine-tuned on IN-1K.

Architecture Data Method Param. FLOPs APb APm

(M) (G) (%) (%)
ResNet-101 CVPR’2016 RetinaNet 57 315 38.5 -
PVT-S ICCV’2021 RetinaNet 34 226 40.4 -
CMT-S CVPR’2022 RetinaNet 45 231 44.3 -
MogaNet-S Ours RetinaNet 35 253 45.8 -
RegNet-1.6G CVPR’2020 Mask R-CNN 29 204 38.9 35.7
PVT-T ICCV’2021 Mask R-CNN 33 208 36.7 35.1
MogaNet-T Ours Mask R-CNN 25 192 42.6 39.1
Swin-T ICCV’2021 Mask R-CNN 48 264 42.2 39.1
Uniformer-S ICLR’2022 Mask R-CNN 41 269 45.6 41.6
ConvNeXt-T CVPR’2022 Mask R-CNN 48 262 44.2 40.1
PVTV2-B2 CVMJ’2022 Mask R-CNN 45 309 45.3 41.2
LITV2-S NIPS’2022 Mask R-CNN 47 261 44.9 40.8
FocalNet-T NIPS’2022 Mask R-CNN 49 267 45.9 41.3
MogaNet-S Ours Mask R-CNN 45 272 46.7 42.2
Swin-S ICCV’2021 Mask R-CNN 69 354 44.8 40.9
Focal-S NIPS’2021 Mask R-CNN 71 401 47.4 42.8
ConvNeXt-S CVPR’2022 Mask R-CNN 70 348 45.4 41.8
HorNet-B7⇥7 NIPS’2022 Mask R-CNN 68 322 47.4 42.3
MogaNet-B Ours Mask R-CNN 63 373 47.9 43.2
Swin-L‡ ICCV’2021 Cascade Mask 253 1382 53.9 46.7
ConvNeXt-L‡ CVPR’2022 Cascade Mask 255 1354 54.8 47.6
RepLKNet-31L‡ CVPR’2022 Cascade Mask 229 1321 53.9 46.5
HorNet-L‡ NIPS’2022 Cascade Mask 259 1399 56.0 48.6
MogaNet-XL‡ Ours Cascade Mask 238 1355 56.2 48.8

Table 4: COCO object detection and instance
segmentation with RetinaNet (1⇥), Mask R-
CNN (1⇥), and Cascade Mask R-CNN (multi-
scale 3⇥). ‡ indicates IN-21K pre-trained mod-
els. The FLOPs are measured at 800⇥ 1280.

Method Architecture Date Crop Param. FLOPs mIoUss

size (M) (G) (%)
PVT-S ICCV’2021 5122 28 161 39.8

Semantic Twins-S NIPS’2021 5122 28 162 44.3
FPN Swin-T ICCV’2021 5122 32 182 41.5

(80K) Uniformer-S ICLR’2022 5122 25 247 46.6
LITV2-S NIPS’2022 5122 31 179 44.3
VAN-B2 CVMJ’2023 5122 30 164 46.7
MogaNet-S Ours 5122 29 189 47.7
DeiT-S ICML’2021 5122 52 1099 44.0
Swin-T ICCV’2021 5122 60 945 46.1
ConvNeXt-T CVPR’2022 5122 60 939 46.7
UniFormer-S ICLR’2022 5122 52 1008 47.6
HorNet-T7⇥7 NIPS’2022 5122 52 926 48.1
MogaNet-S Ours 5122 55 946 49.2
Swin-S ICCV’2021 5122 81 1038 48.1
ConvNeXt-S CVPR’2022 5122 82 1027 48.7

UperNet SLaK-S ICLR’2023 5122 91 1028 49.4
(160K) MogaNet-B Ours 5122 74 1050 50.1

Swin-B ICCV’2021 5122 121 1188 49.7
ConvNeXt-B CVPR’2022 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 5122 112 1170 49.9
SLaK-B ICLR’2023 5122 135 1185 50.2
MogaNet-L Ours 5122 113 1176 50.9
Swin-L‡ ICCV’2021 6402 234 2468 52.1
ConvNeXt-L‡ CVPR’2022 6402 245 2458 53.7
RepLKNet-31L‡ CVPR’2022 6402 207 2404 52.4
MogaNet-XL‡ Ours 6402 214 2451 54.0

Table 5: ADE20K semantic segmentation with
semantic FPN (80K) and UperNet (160K). ‡ in-
dicates using IN-21K pre-trained models. The
FLOPs are measured at 512⇥2048 or 640⇥2560.
Architecture Date Crop Param. FLOPs AP AP50 AP75 AR

size (M) (G) (%) (%) (%) (%)
RSN-18 ECCV’2020 256⇥ 192 9.1 2.3 70.4 88.7 77.9 77.1
MogaNet-T Ours 256⇥ 192 8.1 2.2 73.2 90.1 81.0 78.8
HRNet-W32 CVPR’2019 256⇥ 192 28.5 7.1 74.4 90.5 81.9 78.9
Swin-T ICCV’2021 256⇥ 192 32.8 6.1 72.4 90.1 80.6 78.2
PVTV2-B2 CVML’2022 256⇥ 192 29.1 4.3 73.7 90.5 81.2 79.1
Uniformer-S ICLR’2022 256⇥ 192 25.2 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T CVPR’2022 256⇥ 192 33.1 5.5 73.2 90.0 80.9 78.8
MogaNet-S Ours 256⇥ 192 29.0 6.0 74.9 90.7 82.8 80.1
Uniformer-S ICLR’2022 384⇥ 288 25.2 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T CVPR’2022 384⇥ 288 33.1 33.1 75.3 90.4 82.1 80.5
MogaNet-S Ours 384⇥ 288 29.0 13.5 76.4 91.0 83.3 81.4
HRNet-W48 CVPR’2019 384⇥ 288 63.6 32.9 76.3 90.8 82.0 81.2
Swin-L ICCV’2021 384⇥ 288 203.4 86.9 76.3 91.2 83.0 814
Uniformer-B ICLR’2022 384⇥ 288 53.5 14.8 76.7 90.8 84.0 81.4
MogaNet-B Ours 384⇥ 288 47.4 24.4 77.3 91.4 84.0 82.2

Table 6: COCO 2D human pose estimation
with Top-Down SimpleBaseline. The FLOPs are
measured at 256⇥ 192 or 384⇥ 288.
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Architecture Date Type Image Param. FLOPs Top-1
Size (M) (G) Acc (%)

ResNet-18 CVPR’2016 C 224
2 11.7 1.80 71.5

ShuffleNetV2 2⇥ ECCV’2018 C 224
2 5.5 0.60 75.4

EfficientNet-B0 ICML’2019 C 224
2 5.3 0.39 77.1

RegNetY-800MF CVPR’2020 C 224
2 6.3 0.80 76.3

DeiT-T† ICML’2021 T 224
2 5.7 1.08 74.1

PVT-T ICCV’2021 T 224
2 13.2 1.60 75.1

T2T-ViT-7 ICCV’2021 T 224
2 4.3 1.20 71.7

ViT-C NIPS’2021 T 224
2 4.6 1.10 75.3

SReT-TDistill ECCV’2022 T 224
2 4.8 1.10 77.6

PiT-Ti ICCV’2021 H 224
2 4.9 0.70 74.6

LeViT-S ICCV’2021 H 224
2 7.8 0.31 76.6

CoaT-Lite-T ICCV’2021 H 224
2 5.7 1.60 77.5

Swin-1G ICCV’2021 H 224
2 7.3 1.00 77.3

MobileViT-S ICLR’2022 H 256
2 5.6 4.02 78.4

MobileFormer-294M CVPR’2022 H 224
2 11.4 0.59 77.9

ConvNext-XT CVPR’2022 C 224
2 7.4 0.60 77.5

VAN-B0 CVMJ’2023 C 224
2 4.1 0.88 75.4

ParC-Net-S ECCV’2022 C 256
2 5.0 3.48 78.6

MogaNet-XT Ours C 256
2 3.0 1.04 77.2

MogaNet-T Ours C 224
2 5.2 1.10 79.0

MogaNet-T§ Ours C 256
2 5.2 1.44 80.0

Table 2: IN-1K classification with lightweight
models. § denotes the refined training scheme.
Architecture Date Type Image Param. FLOPs Top-1

Size (M) (G) Acc (%)
Deit-S ICML’2021 T 224

2 22 4.6 79.8
Swin-T ICCV’2021 T 224

2 28 4.5 81.3
CSWin-T CVPR’2022 T 224

2 23 4.3 82.8
LITV2-S NIPS’2022 T 224

2 28 3.7 82.0
CoaT-S ICCV’2021 H 224

2 22 12.6 82.1
CoAtNet-0 NIPS’2021 H 224

2 25 4.2 82.7
UniFormer-S ICLR’2022 H 224

2 22 3.6 82.9
RegNetY-4GF† CVPR’2020 C 224

2 21 4.0 81.5
ConvNeXt-T CVPR’2022 C 224

2 29 4.5 82.1
SLaK-T ICLR’2023 C 224

2 30 5.0 82.5
HorNet-T7⇥7 NIPS’2022 C 224

2 22 4.0 82.8
MogaNet-S Ours C 224

2 25 5.0 83.4
Swin-S ICCV’2021 T 224

2 50 8.7 83.0
Focal-S NIPS’2021 T 224

2 51 9.1 83.6
CSWin-S CVPR’2022 T 224

2 35 6.9 83.6
LITV2-M NIPS’2022 T 224

2 49 7.5 83.3
CoaT-M ICCV’2021 H 224

2 45 9.8 83.6
CoAtNet-1 NIPS’2021 H 224

2 42 8.4 83.3
UniFormer-B ICLR’2022 H 224

2 50 8.3 83.9
FAN-B-Hybrid ICML’2022 H 224

2 50 11.3 83.9
EfficientNet-B6 ICML’2019 C 528

2 43 19.0 84.0
RegNetY-8GF† CVPR’2020 C 224

2 39 8.1 82.2
ConvNeXt-S CVPR’2022 C 224

2 50 8.7 83.1
FocalNet-S (LRF) NIPS’2022 C 224

2 50 8.7 83.5
HorNet-S7⇥7 NIPS’2022 C 224

2 50 8.8 84.0
SLaK-S ICLR’2023 C 224

2 55 9.8 83.8
MogaNet-B Ours C 224

2 44 9.9 84.3
DeiT-B ICML’2021 T 224

2 86 17.5 81.8
Swin-B ICCV’2021 T 224

2 89 15.4 83.5
Focal-B NIPS’2021 T 224

2 90 16.4 84.0
CSWin-B CVPR’2022 T 224

2 78 15.0 84.2
DeiT III-B ECCV’2022 T 224

2 87 18.0 83.8
BoTNet-T7 CVPR’2021 H 256

2 79 19.3 84.2
CoAtNet-2 NIPS’2021 H 224

2 75 15.7 84.1
FAN-B-Hybrid ICML’2022 H 224

2 77 16.9 84.3
RegNetY-16GF CVPR’2020 C 224

2 84 16.0 82.9
ConvNeXt-B CVPR’2022 C 224

2 89 15.4 83.8
RepLKNet-31B CVPR’2022 C 224

2 79 15.3 83.5
FocalNet-B (LRF) NIPS’2022 C 224

2 89 15.4 83.9
HorNet-B7⇥7 NIPS’2022 C 224

2 87 15.6 84.3
SLaK-B ICLR’2023 C 224

2 95 17.1 84.0
MogaNet-L Ours C 224

2 83 15.9 84.7
Swin-L‡ ICCV’2021 T 384

2 197 104 87.3
DeiT III-L‡ ECCV’2022 T 384

2 304 191 87.7
CoAtNet-3‡ NIPS’2021 H 384

2 168 107 87.6
RepLKNet-31L‡ CVPR’2022 C 384

2 172 96 86.6
ConvNeXt-L CVPR’2022 C 224

2 198 34.4 84.3
ConvNeXt-L‡ CVPR’2022 C 384

2 198 101 87.5
ConvNeXt-XL‡ CVPR’2022 C 384

2 350 179 87.8
HorNet-L‡ NIPS’2022 C 384

2 202 102 87.7
MogaNet-XL Ours C 224

2 181 34.5 85.1
MogaNet-XL‡ Ours C 384

2 181 102 87.8

Table 3: IN-1K classification performance with
scaling-up models. ‡ denotes the model is pre-
trained on IN-21K and fine-tuned on IN-1K.

Architecture Data Method Param. FLOPs APb APm

(M) (G) (%) (%)
ResNet-101 CVPR’2016 RetinaNet 57 315 38.5 -
PVT-S ICCV’2021 RetinaNet 34 226 40.4 -
CMT-S CVPR’2022 RetinaNet 45 231 44.3 -
MogaNet-S Ours RetinaNet 35 253 45.8 -
RegNet-1.6G CVPR’2020 Mask R-CNN 29 204 38.9 35.7
PVT-T ICCV’2021 Mask R-CNN 33 208 36.7 35.1
MogaNet-T Ours Mask R-CNN 25 192 42.6 39.1
Swin-T ICCV’2021 Mask R-CNN 48 264 42.2 39.1
Uniformer-S ICLR’2022 Mask R-CNN 41 269 45.6 41.6
ConvNeXt-T CVPR’2022 Mask R-CNN 48 262 44.2 40.1
PVTV2-B2 CVMJ’2022 Mask R-CNN 45 309 45.3 41.2
LITV2-S NIPS’2022 Mask R-CNN 47 261 44.9 40.8
FocalNet-T NIPS’2022 Mask R-CNN 49 267 45.9 41.3
MogaNet-S Ours Mask R-CNN 45 272 46.7 42.2
Swin-S ICCV’2021 Mask R-CNN 69 354 44.8 40.9
Focal-S NIPS’2021 Mask R-CNN 71 401 47.4 42.8
ConvNeXt-S CVPR’2022 Mask R-CNN 70 348 45.4 41.8
HorNet-B7⇥7 NIPS’2022 Mask R-CNN 68 322 47.4 42.3
MogaNet-B Ours Mask R-CNN 63 373 47.9 43.2
Swin-L‡ ICCV’2021 Cascade Mask 253 1382 53.9 46.7
ConvNeXt-L‡ CVPR’2022 Cascade Mask 255 1354 54.8 47.6
RepLKNet-31L‡ CVPR’2022 Cascade Mask 229 1321 53.9 46.5
HorNet-L‡ NIPS’2022 Cascade Mask 259 1399 56.0 48.6
MogaNet-XL‡ Ours Cascade Mask 238 1355 56.2 48.8

Table 4: COCO object detection and instance
segmentation with RetinaNet (1⇥), Mask R-
CNN (1⇥), and Cascade Mask R-CNN (multi-
scale 3⇥). ‡ indicates IN-21K pre-trained mod-
els. The FLOPs are measured at 800⇥ 1280.

Method Architecture Date Crop Param. FLOPs mIoUss

size (M) (G) (%)
PVT-S ICCV’2021 5122 28 161 39.8

Semantic Twins-S NIPS’2021 5122 28 162 44.3
FPN Swin-T ICCV’2021 5122 32 182 41.5

(80K) Uniformer-S ICLR’2022 5122 25 247 46.6
LITV2-S NIPS’2022 5122 31 179 44.3
VAN-B2 CVMJ’2023 5122 30 164 46.7
MogaNet-S Ours 5122 29 189 47.7
DeiT-S ICML’2021 5122 52 1099 44.0
Swin-T ICCV’2021 5122 60 945 46.1
ConvNeXt-T CVPR’2022 5122 60 939 46.7
UniFormer-S ICLR’2022 5122 52 1008 47.6
HorNet-T7⇥7 NIPS’2022 5122 52 926 48.1
MogaNet-S Ours 5122 55 946 49.2
Swin-S ICCV’2021 5122 81 1038 48.1
ConvNeXt-S CVPR’2022 5122 82 1027 48.7

UperNet SLaK-S ICLR’2023 5122 91 1028 49.4
(160K) MogaNet-B Ours 5122 74 1050 50.1

Swin-B ICCV’2021 5122 121 1188 49.7
ConvNeXt-B CVPR’2022 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 5122 112 1170 49.9
SLaK-B ICLR’2023 5122 135 1185 50.2
MogaNet-L Ours 5122 113 1176 50.9
Swin-L‡ ICCV’2021 6402 234 2468 52.1
ConvNeXt-L‡ CVPR’2022 6402 245 2458 53.7
RepLKNet-31L‡ CVPR’2022 6402 207 2404 52.4
MogaNet-XL‡ Ours 6402 214 2451 54.0

Table 5: ADE20K semantic segmentation with
semantic FPN (80K) and UperNet (160K). ‡ in-
dicates using IN-21K pre-trained models. The
FLOPs are measured at 512⇥2048 or 640⇥2560.
Architecture Date Crop Param. FLOPs AP AP50 AP75 AR

size (M) (G) (%) (%) (%) (%)
RSN-18 ECCV’2020 256⇥ 192 9.1 2.3 70.4 88.7 77.9 77.1
MogaNet-T Ours 256⇥ 192 8.1 2.2 73.2 90.1 81.0 78.8
HRNet-W32 CVPR’2019 256⇥ 192 28.5 7.1 74.4 90.5 81.9 78.9
Swin-T ICCV’2021 256⇥ 192 32.8 6.1 72.4 90.1 80.6 78.2
PVTV2-B2 CVML’2022 256⇥ 192 29.1 4.3 73.7 90.5 81.2 79.1
Uniformer-S ICLR’2022 256⇥ 192 25.2 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T CVPR’2022 256⇥ 192 33.1 5.5 73.2 90.0 80.9 78.8
MogaNet-S Ours 256⇥ 192 29.0 6.0 74.9 90.7 82.8 80.1
Uniformer-S ICLR’2022 384⇥ 288 25.2 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T CVPR’2022 384⇥ 288 33.1 33.1 75.3 90.4 82.1 80.5
MogaNet-S Ours 384⇥ 288 29.0 13.5 76.4 91.0 83.3 81.4
HRNet-W48 CVPR’2019 384⇥ 288 63.6 32.9 76.3 90.8 82.0 81.2
Swin-L ICCV’2021 384⇥ 288 203.4 86.9 76.3 91.2 83.0 814
Uniformer-B ICLR’2022 384⇥ 288 53.5 14.8 76.7 90.8 84.0 81.4
MogaNet-B Ours 384⇥ 288 47.4 24.4 77.3 91.4 84.0 82.2

Table 6: COCO 2D human pose estimation
with Top-Down SimpleBaseline. The FLOPs are
measured at 256⇥ 192 or 384⇥ 288.
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Architecture Date Type Image Param. FLOPs Top-1
Size (M) (G) Acc (%)

ResNet-18 CVPR’2016 C 224
2 11.7 1.80 71.5

ShuffleNetV2 2⇥ ECCV’2018 C 224
2 5.5 0.60 75.4

EfficientNet-B0 ICML’2019 C 224
2 5.3 0.39 77.1

RegNetY-800MF CVPR’2020 C 224
2 6.3 0.80 76.3

DeiT-T† ICML’2021 T 224
2 5.7 1.08 74.1

PVT-T ICCV’2021 T 224
2 13.2 1.60 75.1

T2T-ViT-7 ICCV’2021 T 224
2 4.3 1.20 71.7

ViT-C NIPS’2021 T 224
2 4.6 1.10 75.3

SReT-TDistill ECCV’2022 T 224
2 4.8 1.10 77.6

PiT-Ti ICCV’2021 H 224
2 4.9 0.70 74.6

LeViT-S ICCV’2021 H 224
2 7.8 0.31 76.6

CoaT-Lite-T ICCV’2021 H 224
2 5.7 1.60 77.5

Swin-1G ICCV’2021 H 224
2 7.3 1.00 77.3

MobileViT-S ICLR’2022 H 256
2 5.6 4.02 78.4

MobileFormer-294M CVPR’2022 H 224
2 11.4 0.59 77.9

ConvNext-XT CVPR’2022 C 224
2 7.4 0.60 77.5

VAN-B0 CVMJ’2023 C 224
2 4.1 0.88 75.4

ParC-Net-S ECCV’2022 C 256
2 5.0 3.48 78.6

MogaNet-XT Ours C 256
2 3.0 1.04 77.2

MogaNet-T Ours C 224
2 5.2 1.10 79.0

MogaNet-T§ Ours C 256
2 5.2 1.44 80.0

Table 2: IN-1K classification with lightweight
models. § denotes the refined training scheme.
Architecture Date Type Image Param. FLOPs Top-1

Size (M) (G) Acc (%)
Deit-S ICML’2021 T 224

2 22 4.6 79.8
Swin-T ICCV’2021 T 224

2 28 4.5 81.3
CSWin-T CVPR’2022 T 224

2 23 4.3 82.8
LITV2-S NIPS’2022 T 224

2 28 3.7 82.0
CoaT-S ICCV’2021 H 224

2 22 12.6 82.1
CoAtNet-0 NIPS’2021 H 224

2 25 4.2 82.7
UniFormer-S ICLR’2022 H 224

2 22 3.6 82.9
RegNetY-4GF† CVPR’2020 C 224

2 21 4.0 81.5
ConvNeXt-T CVPR’2022 C 224

2 29 4.5 82.1
SLaK-T ICLR’2023 C 224

2 30 5.0 82.5
HorNet-T7⇥7 NIPS’2022 C 224

2 22 4.0 82.8
MogaNet-S Ours C 224

2 25 5.0 83.4
Swin-S ICCV’2021 T 224

2 50 8.7 83.0
Focal-S NIPS’2021 T 224

2 51 9.1 83.6
CSWin-S CVPR’2022 T 224

2 35 6.9 83.6
LITV2-M NIPS’2022 T 224

2 49 7.5 83.3
CoaT-M ICCV’2021 H 224

2 45 9.8 83.6
CoAtNet-1 NIPS’2021 H 224

2 42 8.4 83.3
UniFormer-B ICLR’2022 H 224

2 50 8.3 83.9
FAN-B-Hybrid ICML’2022 H 224

2 50 11.3 83.9
EfficientNet-B6 ICML’2019 C 528

2 43 19.0 84.0
RegNetY-8GF† CVPR’2020 C 224

2 39 8.1 82.2
ConvNeXt-S CVPR’2022 C 224

2 50 8.7 83.1
FocalNet-S (LRF) NIPS’2022 C 224

2 50 8.7 83.5
HorNet-S7⇥7 NIPS’2022 C 224

2 50 8.8 84.0
SLaK-S ICLR’2023 C 224

2 55 9.8 83.8
MogaNet-B Ours C 224

2 44 9.9 84.3
DeiT-B ICML’2021 T 224

2 86 17.5 81.8
Swin-B ICCV’2021 T 224

2 89 15.4 83.5
Focal-B NIPS’2021 T 224

2 90 16.4 84.0
CSWin-B CVPR’2022 T 224

2 78 15.0 84.2
DeiT III-B ECCV’2022 T 224

2 87 18.0 83.8
BoTNet-T7 CVPR’2021 H 256

2 79 19.3 84.2
CoAtNet-2 NIPS’2021 H 224

2 75 15.7 84.1
FAN-B-Hybrid ICML’2022 H 224

2 77 16.9 84.3
RegNetY-16GF CVPR’2020 C 224

2 84 16.0 82.9
ConvNeXt-B CVPR’2022 C 224

2 89 15.4 83.8
RepLKNet-31B CVPR’2022 C 224

2 79 15.3 83.5
FocalNet-B (LRF) NIPS’2022 C 224

2 89 15.4 83.9
HorNet-B7⇥7 NIPS’2022 C 224

2 87 15.6 84.3
SLaK-B ICLR’2023 C 224

2 95 17.1 84.0
MogaNet-L Ours C 224

2 83 15.9 84.7
Swin-L‡ ICCV’2021 T 384

2 197 104 87.3
DeiT III-L‡ ECCV’2022 T 384

2 304 191 87.7
CoAtNet-3‡ NIPS’2021 H 384

2 168 107 87.6
RepLKNet-31L‡ CVPR’2022 C 384

2 172 96 86.6
ConvNeXt-L CVPR’2022 C 224

2 198 34.4 84.3
ConvNeXt-L‡ CVPR’2022 C 384

2 198 101 87.5
ConvNeXt-XL‡ CVPR’2022 C 384

2 350 179 87.8
HorNet-L‡ NIPS’2022 C 384

2 202 102 87.7
MogaNet-XL Ours C 224

2 181 34.5 85.1
MogaNet-XL‡ Ours C 384

2 181 102 87.8

Table 3: IN-1K classification performance with
scaling-up models. ‡ denotes the model is pre-
trained on IN-21K and fine-tuned on IN-1K.

Architecture Data Method Param. FLOPs APb APm

(M) (G) (%) (%)
ResNet-101 CVPR’2016 RetinaNet 57 315 38.5 -
PVT-S ICCV’2021 RetinaNet 34 226 40.4 -
CMT-S CVPR’2022 RetinaNet 45 231 44.3 -
MogaNet-S Ours RetinaNet 35 253 45.8 -
RegNet-1.6G CVPR’2020 Mask R-CNN 29 204 38.9 35.7
PVT-T ICCV’2021 Mask R-CNN 33 208 36.7 35.1
MogaNet-T Ours Mask R-CNN 25 192 42.6 39.1
Swin-T ICCV’2021 Mask R-CNN 48 264 42.2 39.1
Uniformer-S ICLR’2022 Mask R-CNN 41 269 45.6 41.6
ConvNeXt-T CVPR’2022 Mask R-CNN 48 262 44.2 40.1
PVTV2-B2 CVMJ’2022 Mask R-CNN 45 309 45.3 41.2
LITV2-S NIPS’2022 Mask R-CNN 47 261 44.9 40.8
FocalNet-T NIPS’2022 Mask R-CNN 49 267 45.9 41.3
MogaNet-S Ours Mask R-CNN 45 272 46.7 42.2
Swin-S ICCV’2021 Mask R-CNN 69 354 44.8 40.9
Focal-S NIPS’2021 Mask R-CNN 71 401 47.4 42.8
ConvNeXt-S CVPR’2022 Mask R-CNN 70 348 45.4 41.8
HorNet-B7⇥7 NIPS’2022 Mask R-CNN 68 322 47.4 42.3
MogaNet-B Ours Mask R-CNN 63 373 47.9 43.2
Swin-L‡ ICCV’2021 Cascade Mask 253 1382 53.9 46.7
ConvNeXt-L‡ CVPR’2022 Cascade Mask 255 1354 54.8 47.6
RepLKNet-31L‡ CVPR’2022 Cascade Mask 229 1321 53.9 46.5
HorNet-L‡ NIPS’2022 Cascade Mask 259 1399 56.0 48.6
MogaNet-XL‡ Ours Cascade Mask 238 1355 56.2 48.8

Table 4: COCO object detection and instance
segmentation with RetinaNet (1⇥), Mask R-
CNN (1⇥), and Cascade Mask R-CNN (multi-
scale 3⇥). ‡ indicates IN-21K pre-trained mod-
els. The FLOPs are measured at 800⇥ 1280.

Method Architecture Date Crop Param. FLOPs mIoUss

size (M) (G) (%)
PVT-S ICCV’2021 5122 28 161 39.8

Semantic Twins-S NIPS’2021 5122 28 162 44.3
FPN Swin-T ICCV’2021 5122 32 182 41.5

(80K) Uniformer-S ICLR’2022 5122 25 247 46.6
LITV2-S NIPS’2022 5122 31 179 44.3
VAN-B2 CVMJ’2023 5122 30 164 46.7
MogaNet-S Ours 5122 29 189 47.7
DeiT-S ICML’2021 5122 52 1099 44.0
Swin-T ICCV’2021 5122 60 945 46.1
ConvNeXt-T CVPR’2022 5122 60 939 46.7
UniFormer-S ICLR’2022 5122 52 1008 47.6
HorNet-T7⇥7 NIPS’2022 5122 52 926 48.1
MogaNet-S Ours 5122 55 946 49.2
Swin-S ICCV’2021 5122 81 1038 48.1
ConvNeXt-S CVPR’2022 5122 82 1027 48.7

UperNet SLaK-S ICLR’2023 5122 91 1028 49.4
(160K) MogaNet-B Ours 5122 74 1050 50.1

Swin-B ICCV’2021 5122 121 1188 49.7
ConvNeXt-B CVPR’2022 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 5122 112 1170 49.9
SLaK-B ICLR’2023 5122 135 1185 50.2
MogaNet-L Ours 5122 113 1176 50.9
Swin-L‡ ICCV’2021 6402 234 2468 52.1
ConvNeXt-L‡ CVPR’2022 6402 245 2458 53.7
RepLKNet-31L‡ CVPR’2022 6402 207 2404 52.4
MogaNet-XL‡ Ours 6402 214 2451 54.0

Table 5: ADE20K semantic segmentation with
semantic FPN (80K) and UperNet (160K). ‡ in-
dicates using IN-21K pre-trained models. The
FLOPs are measured at 512⇥2048 or 640⇥2560.
Architecture Date Crop Param. FLOPs AP AP50 AP75 AR

size (M) (G) (%) (%) (%) (%)
RSN-18 ECCV’2020 256⇥ 192 9.1 2.3 70.4 88.7 77.9 77.1
MogaNet-T Ours 256⇥ 192 8.1 2.2 73.2 90.1 81.0 78.8
HRNet-W32 CVPR’2019 256⇥ 192 28.5 7.1 74.4 90.5 81.9 78.9
Swin-T ICCV’2021 256⇥ 192 32.8 6.1 72.4 90.1 80.6 78.2
PVTV2-B2 CVML’2022 256⇥ 192 29.1 4.3 73.7 90.5 81.2 79.1
Uniformer-S ICLR’2022 256⇥ 192 25.2 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T CVPR’2022 256⇥ 192 33.1 5.5 73.2 90.0 80.9 78.8
MogaNet-S Ours 256⇥ 192 29.0 6.0 74.9 90.7 82.8 80.1
Uniformer-S ICLR’2022 384⇥ 288 25.2 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T CVPR’2022 384⇥ 288 33.1 33.1 75.3 90.4 82.1 80.5
MogaNet-S Ours 384⇥ 288 29.0 13.5 76.4 91.0 83.3 81.4
HRNet-W48 CVPR’2019 384⇥ 288 63.6 32.9 76.3 90.8 82.0 81.2
Swin-L ICCV’2021 384⇥ 288 203.4 86.9 76.3 91.2 83.0 814
Uniformer-B ICLR’2022 384⇥ 288 53.5 14.8 76.7 90.8 84.0 81.4
MogaNet-B Ours 384⇥ 288 47.4 24.4 77.3 91.4 84.0 82.2

Table 6: COCO 2D human pose estimation
with Top-Down SimpleBaseline. The FLOPs are
measured at 256⇥ 192 or 384⇥ 288.
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Architecture Input Learning Warmup Rand 3-Augment EMA Top-1
size rate epochs Augment Acc (%)

DeiT-T 224
2

1⇥ 10
�3 5 9/0.5 7 3 72.2

DeiT-T 224
2

2⇥ 10
�3 20 7 3 7 75.9

ParC-Net-S 256
2

1⇥ 10
�3 5 9/0.5 7 3 78.6

ParC-Net-S 256
2

2⇥ 10
�3 20 7 3 7 78.8

MogaNet-XT 224
2

1⇥ 10
�3 5 7/0.5 7 7 76.5

MogaNet-XT 224
2

2⇥ 10
�3 20 7 3 7 77.1

MogaNet-XT 256
2

1⇥ 10
�3 5 7/0.5 7 7 77.2

MogaNet-XT 256
2

2⇥ 10
�3 20 7 3 7 77.6

MogaNet-T 224
2

1⇥ 10
�3 5 7/0.5 7 7 79.0

MogaNet-T 224
2

2⇥ 10
�3 20 7 3 7 79.4

MogaNet-T 256
2

1⇥ 10
�3 5 7/0.5 7 7 79.6

MogaNet-T 256
2

2⇥ 10
�3 20 7 3 7 80.0

Table A7: Advanced training recipes for Lightweight models of MogaNet on ImageNet-1K.

Architecture Type #P. FLOPs RetinaNet 1⇥
(M) (G) AP AP50 AP75 APS APM APL

RegNet-800M C 17 168 35.6 54.7 37.7 19.7 390 47.8
PVTV2-B0 T 13 160 37.1 57.2 39.2 23.4 40.4 49.2
MogaNet-XT C 12 167 39.7 60.0 42.4 23.8 43.6 51.7
ResNet-18 C 21 189 31.8 49.6 33.6 16.3 34.3 43.2
RegNet-1.6G C 20 185 37.4 56.8 39.8 22.4 41.1 49.2
RegNet-3.2G C 26 218 39.0 58.4 41.9 22.6 43.5 50.8
PVT-T T 23 183 36.7 56.9 38.9 22.6 38.8 50.0
PoolFormer-S12 T 22 207 36.2 56.2 38.2 20.8 39.1 48.0
PVTV2-B1 T 24 187 41.1 61.4 43.8 26.0 44.6 54.6
MogaNet-T C 14 173 41.4 61.5 44.4 25.1 45.7 53.6
ResNet-50 C 37 239 36.3 55.3 38.6 19.3 40.0 48.8
Swin-T T 38 245 41.8 62.6 44.7 25.2 45.8 54.7
PVT-S T 34 226 40.4 61.3 43.0 25.0 42.9 55.7
Twins-SVT-S T 34 209 42.3 63.4 45.2 26.0 45.5 56.5
Focal-T T 39 265 43.7 - - - - -
PoolFormer-S36 T 41 272 39.5 60.5 41.8 22.5 42.9 52.4
PVTV2-B2 T 35 281 44.6 65.7 47.6 28.6 48.5 59.2
CMT-S H 45 231 44.3 65.5 47.5 27.1 48.3 59.1
MogaNet-S C 35 253 45.8 66.6 49.0 29.1 50.1 59.8
ResNet-101 C 57 315 38.5 57.8 41.2 21.4 42.6 51.1
PVT-M T 54 258 41.9 63.1 44.3 25.0 44.9 57.6
Focal-S T 62 367 45.6 - - - - -
PVTV2-B3 T 55 263 46.0 67.0 49.5 28.2 50.0 61.3
PVTV2-B4 T 73 315 46.3 67.0 49.6 29.0 50.1 62.7
MogaNet-B C 54 355 47.7 68.9 51.0 30.5 52.2 61.7
ResNeXt-101-64 C 95 473 41.0 60.9 44.0 23.9 45.2 54.0
PVTV2-B5 T 92 335 46.1 66.6 49.5 27.8 50.2 62.0
MogaNet-L C 92 477 48.7 69.5 52.6 31.5 53.4 62.7

Table A8: Object detection with RetinaNet (1⇥ training schedule) on COCO val2017. The FLOPs
are measured at resolution 800⇥ 1280.

224
2 resolutions outperforms DeiT-T under the refined training scheme by 1.2% with only 3M

parameters.

D MORE COMPARISON EXPERIMENTS

D.1 FAST TRAINING ON IMAGENET-1K

In addition to Sec. 5.1, we further provide comparison results for 100 and 300 epochs training on
ImageNet-1K. As for 100-epoch training, we adopt the original RSB A3 (Wightman et al., 2021)
setting for all methods, which adopts LAMB (You et al., 2020) optimizer and a small training res-
olution of 1602. We search the basic learning in {0.006, 0.008} for all architectures and adopt the
gradient clipping for Transformer-based networks. As for 300-epoch training, we report results of
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Architecture Input Learning Warmup Rand 3-Augment EMA Top-1
size rate epochs Augment Acc (%)

DeiT-T 224
2

1⇥ 10
�3 5 9/0.5 7 3 72.2

DeiT-T 224
2

2⇥ 10
�3 20 7 3 7 75.9

ParC-Net-S 256
2

1⇥ 10
�3 5 9/0.5 7 3 78.6

ParC-Net-S 256
2

2⇥ 10
�3 20 7 3 7 78.8

MogaNet-XT 224
2

1⇥ 10
�3 5 7/0.5 7 7 76.5

MogaNet-XT 224
2

2⇥ 10
�3 20 7 3 7 77.1

MogaNet-XT 256
2

1⇥ 10
�3 5 7/0.5 7 7 77.2

MogaNet-XT 256
2

2⇥ 10
�3 20 7 3 7 77.6

MogaNet-T 224
2

1⇥ 10
�3 5 7/0.5 7 7 79.0

MogaNet-T 224
2

2⇥ 10
�3 20 7 3 7 79.4

MogaNet-T 256
2

1⇥ 10
�3 5 7/0.5 7 7 79.6

MogaNet-T 256
2

2⇥ 10
�3 20 7 3 7 80.0

Table A7: Advanced training recipes for Lightweight models of MogaNet on ImageNet-1K.

Architecture Type #P. FLOPs RetinaNet 1⇥
(M) (G) AP AP50 AP75 APS APM APL

RegNet-800M C 17 168 35.6 54.7 37.7 19.7 390 47.8
PVTV2-B0 T 13 160 37.1 57.2 39.2 23.4 40.4 49.2
MogaNet-XT C 12 167 39.7 60.0 42.4 23.8 43.6 51.7
ResNet-18 C 21 189 31.8 49.6 33.6 16.3 34.3 43.2
RegNet-1.6G C 20 185 37.4 56.8 39.8 22.4 41.1 49.2
RegNet-3.2G C 26 218 39.0 58.4 41.9 22.6 43.5 50.8
PVT-T T 23 183 36.7 56.9 38.9 22.6 38.8 50.0
PoolFormer-S12 T 22 207 36.2 56.2 38.2 20.8 39.1 48.0
PVTV2-B1 T 24 187 41.1 61.4 43.8 26.0 44.6 54.6
MogaNet-T C 14 173 41.4 61.5 44.4 25.1 45.7 53.6
ResNet-50 C 37 239 36.3 55.3 38.6 19.3 40.0 48.8
Swin-T T 38 245 41.8 62.6 44.7 25.2 45.8 54.7
PVT-S T 34 226 40.4 61.3 43.0 25.0 42.9 55.7
Twins-SVT-S T 34 209 42.3 63.4 45.2 26.0 45.5 56.5
Focal-T T 39 265 43.7 - - - - -
PoolFormer-S36 T 41 272 39.5 60.5 41.8 22.5 42.9 52.4
PVTV2-B2 T 35 281 44.6 65.7 47.6 28.6 48.5 59.2
CMT-S H 45 231 44.3 65.5 47.5 27.1 48.3 59.1
MogaNet-S C 35 253 45.8 66.6 49.0 29.1 50.1 59.8
ResNet-101 C 57 315 38.5 57.8 41.2 21.4 42.6 51.1
PVT-M T 54 258 41.9 63.1 44.3 25.0 44.9 57.6
Focal-S T 62 367 45.6 - - - - -
PVTV2-B3 T 55 263 46.0 67.0 49.5 28.2 50.0 61.3
PVTV2-B4 T 73 315 46.3 67.0 49.6 29.0 50.1 62.7
MogaNet-B C 54 355 47.7 68.9 51.0 30.5 52.2 61.7
ResNeXt-101-64 C 95 473 41.0 60.9 44.0 23.9 45.2 54.0
PVTV2-B5 T 92 335 46.1 66.6 49.5 27.8 50.2 62.0
MogaNet-L C 92 477 48.7 69.5 52.6 31.5 53.4 62.7

Table A8: Object detection with RetinaNet (1⇥ training schedule) on COCO val2017. The FLOPs
are measured at resolution 800⇥ 1280.

224
2 resolutions outperforms DeiT-T under the refined training scheme by 1.2% with only 3M

parameters.

D MORE COMPARISON EXPERIMENTS

D.1 FAST TRAINING ON IMAGENET-1K

In addition to Sec. 5.1, we further provide comparison results for 100 and 300 epochs training on
ImageNet-1K. As for 100-epoch training, we adopt the original RSB A3 (Wightman et al., 2021)
setting for all methods, which adopts LAMB (You et al., 2020) optimizer and a small training res-
olution of 1602. We search the basic learning in {0.006, 0.008} for all architectures and adopt the
gradient clipping for Transformer-based networks. As for 300-epoch training, we report results of
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Architecture Date Type Param. 100-epoch 300-epoch
(M) Train Test Acc (%) Train Test Acc (%)

ResNet-18 (He et al., 2016) CVPR’2016 C 12 1602 2242 68.2 2242 2242 70.6
ResNet-34 (He et al., 2016) CVPR’2016 C 22 1602 2242 73.0 2242 2242 75.5
ResNet-50 (He et al., 2016) CVPR’2016 C 26 1602 2242 78.1 2242 2242 79.8
ResNet-101 (He et al., 2016) CVPR’2016 C 45 1602 2242 79.9 2242 2242 81.3
ResNet-152 (He et al., 2016) CVPR’2016 C 60 1602 2242 80.7 2242 2242 82.0
ResNet-200 (He et al., 2016) CVPR’2016 C 65 1602 2242 80.9 2242 2242 82.1
ResNeXt-50 (Xie et al., 2017) CVPR’2017 C 25 1602 2242 79.2 2242 2242 80.4
SE-ResNet-50 (Hu et al., 2018) CVPR’2018 C 28 1602 2242 77.0 2242 2242 80.1
EfficientNet-B0 (Tan & Le, 2019) ICML’2019 C 5 1602 2242 73.0 2242 2242 77.1
EfficientNet-B1 (Tan & Le, 2019) ICML’2019 C 8 1602 2242 74.9 2402 2402 79.4
EfficientNet-B2 (Tan & Le, 2019) ICML’2019 C 9 1922 2562 77.5 2602 2602 80.1
EfficientNet-B3 (Tan & Le, 2019) ICML’2019 C 12 2242 2882 79.2 3002 3002 81.4
EfficientNet-B4 (Tan & Le, 2019) ICML’2019 C 19 3202 3802 81.2 3802 3802 82.4
RegNetY-800MF (Radosavovic et al., 2020) CVPR’2020 C 6 1602 2242 73.8 2242 2242 76.3
RegNetY-4GF (Radosavovic et al., 2020) CVPR’2020 C 21 1602 2242 79.0 2242 2242 79.4
RegNetY-8GF (Radosavovic et al., 2020) CVPR’2020 C 39 1602 2242 81.1 2242 2242 79.9
RegNetY-16GF (Radosavovic et al., 2020) CVPR’2020 C 84 1602 2242 81.7 2242 2242 80.4
EfficientNetV2-rw-S (Tan & Le, 2021) ICML’2021 C 24 2242 2882 80.9 2882 3842 82.9
EfficientNetV2-rw-M (Tan & Le, 2021) ICML’2021 C 53 2562 3842 82.3 3202 3842 81.9
ViT-T (Dosovitskiy et al., 2021) ICLR’2021 T 6 1602 2242 66.7 2242 2242 72.2
ViT-S (Dosovitskiy et al., 2021) ICLR’2021 T 22 1602 2242 73.8 2242 2242 79.8
ViT-B (Dosovitskiy et al., 2021) ICLR’2021 T 86 1602 2242 76.0 2242 2242 81.8
PVT-T (Wang et al., 2021b) ICCV’2021 T 13 1602 2242 71.5 2242 2242 75.1
PVT-S (Wang et al., 2021b) ICCV’2021 T 25 1602 2242 72.1 2242 2242 79.8
Swin-T (Liu et al., 2021) ICCV’2021 T 28 1602 2242 77.7 2242 2242 81.3
Swin-S (Liu et al., 2021) ICCV’2021 T 50 1602 2242 80.2 2242 2242 83.0
Swin-S (Liu et al., 2021) ICCV’2021 T 50 1602 2242 80.5 2242 2242 83.5
LITV2-T (Pan et al., 2022a) NIPS’2022 T 28 1602 2242 79.7 2242 2242 82.0
LITV2-M (Pan et al., 2022a) NIPS’2022 T 49 1602 2242 80.5 2242 2242 83.3
LITV2-B (Pan et al., 2022a) NIPS’2022 T 87 1602 2242 81.3 2242 2242 83.6
ConvMixer-768-d32 (Trockman & Kolter, 2022) arXiv’2022 T 21 1602 2242 77.6 2242 2242 80.2
PoolFormer-S12 (Yu et al., 2022) CVPR’2022 T 12 1602 2242 69.3 2242 2242 77.2
PoolFormer-S24 (Yu et al., 2022) CVPR’2022 T 21 1602 2242 74.1 2242 2242 80.3
PoolFormer-S36 (Yu et al., 2022) CVPR’2022 T 31 1602 2242 74.6 2242 2242 81.4
PoolFormer-M36 (Yu et al., 2022) CVPR’2022 T 56 1602 2242 80.7 2242 2242 82.1
PoolFormer-M48 (Yu et al., 2022) CVPR’2022 T 73 1602 2242 81.2 2242 2242 82.5
ConvNeXt-T (Liu et al., 2022b) CVPR’2022 C 29 1602 2242 78.8 2242 2242 82.1
ConvNeXt-S (Liu et al., 2022b) CVPR’2022 C 50 1602 2242 81.7 2242 2242 83.1
ConvNeXt-B (Liu et al., 2022b) CVPR’2022 C 89 1602 2242 82.1 2242 2242 83.8
ConvNeXt-L (Liu et al., 2022b) CVPR’2022 C 189 1602 2242 82.8 2242 2242 84.3
ConvNeXt-XL (Liu et al., 2022b) CVPR’2022 C 350 1602 2242 82.9 2242 2242 84.5
HorNet-T7⇥7 (Rao et al., 2022) NIPS’2022 C 22 1602 2242 80.1 2242 2242 82.8
HorNet-S7⇥7 (Rao et al., 2022) NIPS’2022 C 50 1602 2242 81.2 2242 2242 84.0
VAN-B0 (Guo et al., 2023) CVMJ’2023 C 4 1602 2242 72.6 2242 2242 75.8
VAN-B2 (Guo et al., 2023) CVMJ’2023 C 27 1602 2242 81.0 2242 2242 82.8
VAN-B3 (Guo et al., 2023) CVMJ’2023 C 45 1602 2242 81.9 2242 2242 83.9
MogaNet-XT Ours C 3 1602 2242 72.8 2242 2242 76.5
MogaNet-T Ours C 5 1602 2242 75.4 2242 2242 79.0
MogaNet-S Ours C 25 1602 2242 81.1 2242 2242 83.4
MogaNet-B Ours C 44 1602 2242 82.2 2242 2242 84.3
MogaNet-L Ours C 83 1602 2242 83.2 2242 2242 84.7

Table A15: ImageNet-1K classification performance of tiny to medium size models (5⇠50M) train-
ing 100 and 300 epochs. RSB A3 (Wightman et al., 2021) setting is used for 100-epoch training
of all methods. As for 300-epoch results, the RSB A2 (Wightman et al., 2021) setting is used for
ResNet, ResNeXt, SE-ResNet, EfficientNet, and EfficientNetV2 as reproduced in timm (Wightman
et al., 2021), while other methods adopt settings in their original paper.

size patches as visual tokens to capture long-range feature interactions among these tokens by self-
attention. By introducing regional inductive bias, ViT and its variants have been extended to various
vision tasks Carion et al. (2020); Zhu et al. (2021); Chen et al. (2021); Parmar et al. (2018); Jiang
et al. (2021a); Arnab et al. (2021). Equipped with advanced training strategies (Touvron et al.,
2021a; 2022) or extra knowledge (Jiang et al., 2021b; Lin et al., 2022; Wu et al., 2022c), pure
ViTs can achieve competitive performance as ConvNets in CV tasks. In the literature of Yu et al.
(2022), the MetaFormer architecture substantially influenced the design of vision backbones, and all
Transformer-like models (Touvron et al., 2021a; Trockman & Kolter, 2022; Wang et al., 2022a) are
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Architecture Date Type Param. 100-epoch 300-epoch
(M) Train Test Acc (%) Train Test Acc (%)

ResNet-18 (He et al., 2016) CVPR’2016 C 12 1602 2242 68.2 2242 2242 70.6
ResNet-34 (He et al., 2016) CVPR’2016 C 22 1602 2242 73.0 2242 2242 75.5
ResNet-50 (He et al., 2016) CVPR’2016 C 26 1602 2242 78.1 2242 2242 79.8
ResNet-101 (He et al., 2016) CVPR’2016 C 45 1602 2242 79.9 2242 2242 81.3
ResNet-152 (He et al., 2016) CVPR’2016 C 60 1602 2242 80.7 2242 2242 82.0
ResNet-200 (He et al., 2016) CVPR’2016 C 65 1602 2242 80.9 2242 2242 82.1
ResNeXt-50 (Xie et al., 2017) CVPR’2017 C 25 1602 2242 79.2 2242 2242 80.4
SE-ResNet-50 (Hu et al., 2018) CVPR’2018 C 28 1602 2242 77.0 2242 2242 80.1
EfficientNet-B0 (Tan & Le, 2019) ICML’2019 C 5 1602 2242 73.0 2242 2242 77.1
EfficientNet-B1 (Tan & Le, 2019) ICML’2019 C 8 1602 2242 74.9 2402 2402 79.4
EfficientNet-B2 (Tan & Le, 2019) ICML’2019 C 9 1922 2562 77.5 2602 2602 80.1
EfficientNet-B3 (Tan & Le, 2019) ICML’2019 C 12 2242 2882 79.2 3002 3002 81.4
EfficientNet-B4 (Tan & Le, 2019) ICML’2019 C 19 3202 3802 81.2 3802 3802 82.4
RegNetY-800MF (Radosavovic et al., 2020) CVPR’2020 C 6 1602 2242 73.8 2242 2242 76.3
RegNetY-4GF (Radosavovic et al., 2020) CVPR’2020 C 21 1602 2242 79.0 2242 2242 79.4
RegNetY-8GF (Radosavovic et al., 2020) CVPR’2020 C 39 1602 2242 81.1 2242 2242 79.9
RegNetY-16GF (Radosavovic et al., 2020) CVPR’2020 C 84 1602 2242 81.7 2242 2242 80.4
EfficientNetV2-rw-S (Tan & Le, 2021) ICML’2021 C 24 2242 2882 80.9 2882 3842 82.9
EfficientNetV2-rw-M (Tan & Le, 2021) ICML’2021 C 53 2562 3842 82.3 3202 3842 81.9
ViT-T (Dosovitskiy et al., 2021) ICLR’2021 T 6 1602 2242 66.7 2242 2242 72.2
ViT-S (Dosovitskiy et al., 2021) ICLR’2021 T 22 1602 2242 73.8 2242 2242 79.8
ViT-B (Dosovitskiy et al., 2021) ICLR’2021 T 86 1602 2242 76.0 2242 2242 81.8
PVT-T (Wang et al., 2021b) ICCV’2021 T 13 1602 2242 71.5 2242 2242 75.1
PVT-S (Wang et al., 2021b) ICCV’2021 T 25 1602 2242 72.1 2242 2242 79.8
Swin-T (Liu et al., 2021) ICCV’2021 T 28 1602 2242 77.7 2242 2242 81.3
Swin-S (Liu et al., 2021) ICCV’2021 T 50 1602 2242 80.2 2242 2242 83.0
Swin-S (Liu et al., 2021) ICCV’2021 T 50 1602 2242 80.5 2242 2242 83.5
LITV2-T (Pan et al., 2022a) NIPS’2022 T 28 1602 2242 79.7 2242 2242 82.0
LITV2-M (Pan et al., 2022a) NIPS’2022 T 49 1602 2242 80.5 2242 2242 83.3
LITV2-B (Pan et al., 2022a) NIPS’2022 T 87 1602 2242 81.3 2242 2242 83.6
ConvMixer-768-d32 (Trockman & Kolter, 2022) arXiv’2022 T 21 1602 2242 77.6 2242 2242 80.2
PoolFormer-S12 (Yu et al., 2022) CVPR’2022 T 12 1602 2242 69.3 2242 2242 77.2
PoolFormer-S24 (Yu et al., 2022) CVPR’2022 T 21 1602 2242 74.1 2242 2242 80.3
PoolFormer-S36 (Yu et al., 2022) CVPR’2022 T 31 1602 2242 74.6 2242 2242 81.4
PoolFormer-M36 (Yu et al., 2022) CVPR’2022 T 56 1602 2242 80.7 2242 2242 82.1
PoolFormer-M48 (Yu et al., 2022) CVPR’2022 T 73 1602 2242 81.2 2242 2242 82.5
ConvNeXt-T (Liu et al., 2022b) CVPR’2022 C 29 1602 2242 78.8 2242 2242 82.1
ConvNeXt-S (Liu et al., 2022b) CVPR’2022 C 50 1602 2242 81.7 2242 2242 83.1
ConvNeXt-B (Liu et al., 2022b) CVPR’2022 C 89 1602 2242 82.1 2242 2242 83.8
ConvNeXt-L (Liu et al., 2022b) CVPR’2022 C 189 1602 2242 82.8 2242 2242 84.3
ConvNeXt-XL (Liu et al., 2022b) CVPR’2022 C 350 1602 2242 82.9 2242 2242 84.5
HorNet-T7⇥7 (Rao et al., 2022) NIPS’2022 C 22 1602 2242 80.1 2242 2242 82.8
HorNet-S7⇥7 (Rao et al., 2022) NIPS’2022 C 50 1602 2242 81.2 2242 2242 84.0
VAN-B0 (Guo et al., 2023) CVMJ’2023 C 4 1602 2242 72.6 2242 2242 75.8
VAN-B2 (Guo et al., 2023) CVMJ’2023 C 27 1602 2242 81.0 2242 2242 82.8
VAN-B3 (Guo et al., 2023) CVMJ’2023 C 45 1602 2242 81.9 2242 2242 83.9
MogaNet-XT Ours C 3 1602 2242 72.8 2242 2242 76.5
MogaNet-T Ours C 5 1602 2242 75.4 2242 2242 79.0
MogaNet-S Ours C 25 1602 2242 81.1 2242 2242 83.4
MogaNet-B Ours C 44 1602 2242 82.2 2242 2242 84.3
MogaNet-L Ours C 83 1602 2242 83.2 2242 2242 84.7

Table A15: ImageNet-1K classification performance of tiny to medium size models (5⇠50M) train-
ing 100 and 300 epochs. RSB A3 (Wightman et al., 2021) setting is used for 100-epoch training
of all methods. As for 300-epoch results, the RSB A2 (Wightman et al., 2021) setting is used for
ResNet, ResNeXt, SE-ResNet, EfficientNet, and EfficientNetV2 as reproduced in timm (Wightman
et al., 2021), while other methods adopt settings in their original paper.

size patches as visual tokens to capture long-range feature interactions among these tokens by self-
attention. By introducing regional inductive bias, ViT and its variants have been extended to various
vision tasks Carion et al. (2020); Zhu et al. (2021); Chen et al. (2021); Parmar et al. (2018); Jiang
et al. (2021a); Arnab et al. (2021). Equipped with advanced training strategies (Touvron et al.,
2021a; 2022) or extra knowledge (Jiang et al., 2021b; Lin et al., 2022; Wu et al., 2022c), pure
ViTs can achieve competitive performance as ConvNets in CV tasks. In the literature of Yu et al.
(2022), the MetaFormer architecture substantially influenced the design of vision backbones, and all
Transformer-like models (Touvron et al., 2021a; Trockman & Kolter, 2022; Wang et al., 2022a) are
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Architecture Type #P. FLOPs Mask R-CNN 1⇥
(M) (G) APb APb

50 APb

75 APm APm

50 APm

75
RegNet-800M C 27 187 37.5 57.9 41.1 34.3 56.0 36.8
MogaNet-XT C 23 185 40.7 62.3 44.4 37.6 59.6 40.2
ResNet-18 C 31 207 34.0 54.0 36.7 31.2 51.0 32.7
RegNet-1.6G C 29 204 38.9 60.5 43.1 35.7 57.4 38.9
PVT-T T 33 208 36.7 59.2 39.3 35.1 56.7 37.3
PoolFormer-S12 T 32 207 37.3 59.0 40.1 34.6 55.8 36.9
MogaNet-T C 25 192 42.6 64.0 46.4 39.1 61.3 42.0
ResNet-50 C 44 260 38.0 58.6 41.4 34.4 55.1 36.7
RegNet-6.4G C 45 307 41.1 62.3 45.2 37.1 59.2 39.6
PVT-S T 44 245 40.4 62.9 43.8 37.8 60.1 40.3
Swin-T T 48 264 42.2 64.6 46.2 39.1 61.6 42.0
MViT-T T 46 326 45.9 68.7 50.5 42.1 66.0 45.4
PoolFormer-S36 T 32 207 41.0 63.1 44.8 37.7 60.1 40.0
Focal-T T 49 291 44.8 67.7 49.2 41.0 64.7 44.2
PVTV2-B2 T 45 309 45.3 67.1 49.6 41.2 64.2 44.4
LITV2-S T 47 261 44.9 67.0 49.5 40.8 63.8 44.2
CMT-S H 45 249 44.6 66.8 48.9 40.7 63.9 43.4
Conformer-S/16 H 58 341 43.6 65.6 47.7 39.7 62.6 42.5
Uniformer-S H 41 269 45.6 68.1 49.7 41.6 64.8 45.0
ConvNeXt-T C 48 262 44.2 66.6 48.3 40.1 63.3 42.8
FocalNet-T (SRF) C 49 267 45.9 68.3 50.1 41.3 65.0 44.3
FocalNet-T (LRF) C 49 268 46.1 68.2 50.6 41.5 65.1 44.5
MogaNet-S C 45 272 46.7 68.0 51.3 42.2 65.4 45.5
ResNet-101 C 63 336 40.4 61.1 44.2 36.4 57.7 38.8
RegNet-12G C 64 423 42.2 63.7 46.1 38.0 60.5 40.5
PVT-M T 64 302 42.0 64.4 45.6 39.0 61.6 42.1
Swin-S T 69 354 44.8 66.6 48.9 40.9 63.4 44.2
Focal-S T 71 401 47.4 69.8 51.9 42.8 66.6 46.1
PVTV2-B3 T 65 397 47.0 68.1 51.7 42.5 65.7 45.7
LITV2-M T 68 315 46.5 68.0 50.9 42.0 65.1 45.0
UniFormer-B H 69 399 47.4 69.7 52.1 43.1 66.0 46.5
ConvNeXt-S C 70 348 45.4 67.9 50.0 41.8 65.2 45.1
MogaNet-B C 63 373 47.9 70.0 52.7 43.2 67.0 46.6
Swin-B T 107 496 46.9 69.6 51.2 42.3 65.9 45.6
PVTV2-B5 T 102 557 47.4 68.6 51.9 42.5 65.7 46.0
ConvNeXt-B C 108 486 47.0 69.4 51.7 42.7 66.3 46.0
FocalNet-B (SRF) C 109 496 48.8 70.7 53.5 43.3 67.5 46.5
MogaNet-L C 102 495 49.4 70.7 54.1 44.1 68.1 47.6

Table A9: Object detection and instance segmentation with Mask R-CNN (1⇥ training schedule)
on COCO val2017. The FLOPs are measured at resolution 800⇥ 1280.

RSB A2 (Wightman et al., 2021) for classical CNN or the original setting for Transformers or mod-
ern ConvNets. In Table A15, when compared with models of similar parameter size, our proposed
MogaNet-XT/T/S/B achieves the best performance in both 100 and 300 epochs training. Results of
100-epoch training show that MogaNet has a faster convergence speed than previous architectures
of various types. For example, MogaNet-T outperforms EfficientNet-B0 and DeiT-T by 2.4% and
8.7%, MogaNet-S outperforms Swin-T by 3.4%, and MogaNet-B outperforms Swin-S by 2.0%.
Notice that ConvNeXt variants have a great convergence speed, e.g., ConvNeXt-S achieves 81.7%
surpassing Swin-S by 1.5 and recently proposed ConvNet HorNet-S7⇥7 by 0.5 with similar param-
eters. But our proposed MogaNet convergences faster than ConvNet, e.g., MogaNet-S outperforms
ConvNeXt-T by 2.3% with similar parameters while MogaNet-B/L reaching competitive perfor-
mances as ConvNeXt-B/L with only 44⇠50% parameters.

D.2 DETECTION AND SEGMENTATION RESULTS ON COCO

In addition to Sec. 5.2, we provide full results of object detection and instance segmentation tasks
with RetinaNet, Mask R-CNN, and Cascade Mask R-CNN on COCO. As shown in Table A8 and
Table A9, RetinaNet or Mask R-CNN with MogaNet variants outperforms existing models when
training 1⇥ schedule. For example, RetinaNet with MogaNet-T/S/B/L achieve 45.8/47.7/48.7 APb,
outperforming PVT-T/S/M and PVTV2-B1/B2/B3/B5 by 4.7/4.6/5.8 and 0.3/1.2/1.7/2.6 APb; Nask
R-CNN with MogaNet-S/B/L achieve 46.7/47.9/49.4 APb, exceeding Swin-T/S/B and ConvNeXt-
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Architecture Input Learning Warmup Rand 3-Augment EMA Top-1
size rate epochs Augment Acc (%)

DeiT-T 224
2

1⇥ 10
�3 5 9/0.5 7 3 72.2

DeiT-T 224
2

2⇥ 10
�3 20 7 3 7 75.9

ParC-Net-S 256
2

1⇥ 10
�3 5 9/0.5 7 3 78.6

ParC-Net-S 256
2

2⇥ 10
�3 20 7 3 7 78.8

MogaNet-XT 224
2

1⇥ 10
�3 5 7/0.5 7 7 76.5

MogaNet-XT 224
2

2⇥ 10
�3 20 7 3 7 77.1

MogaNet-XT 256
2

1⇥ 10
�3 5 7/0.5 7 7 77.2

MogaNet-XT 256
2

2⇥ 10
�3 20 7 3 7 77.6

MogaNet-T 224
2

1⇥ 10
�3 5 7/0.5 7 7 79.0

MogaNet-T 224
2

2⇥ 10
�3 20 7 3 7 79.4

MogaNet-T 256
2

1⇥ 10
�3 5 7/0.5 7 7 79.6

MogaNet-T 256
2

2⇥ 10
�3 20 7 3 7 80.0

Table A7: Advanced training recipes for Lightweight models of MogaNet on ImageNet-1K.

Architecture Type #P. FLOPs RetinaNet 1⇥
(M) (G) AP AP50 AP75 APS APM APL

RegNet-800M C 17 168 35.6 54.7 37.7 19.7 390 47.8
PVTV2-B0 T 13 160 37.1 57.2 39.2 23.4 40.4 49.2
MogaNet-XT C 12 167 39.7 60.0 42.4 23.8 43.6 51.7
ResNet-18 C 21 189 31.8 49.6 33.6 16.3 34.3 43.2
RegNet-1.6G C 20 185 37.4 56.8 39.8 22.4 41.1 49.2
RegNet-3.2G C 26 218 39.0 58.4 41.9 22.6 43.5 50.8
PVT-T T 23 183 36.7 56.9 38.9 22.6 38.8 50.0
PoolFormer-S12 T 22 207 36.2 56.2 38.2 20.8 39.1 48.0
PVTV2-B1 T 24 187 41.1 61.4 43.8 26.0 44.6 54.6
MogaNet-T C 14 173 41.4 61.5 44.4 25.1 45.7 53.6
ResNet-50 C 37 239 36.3 55.3 38.6 19.3 40.0 48.8
Swin-T T 38 245 41.8 62.6 44.7 25.2 45.8 54.7
PVT-S T 34 226 40.4 61.3 43.0 25.0 42.9 55.7
Twins-SVT-S T 34 209 42.3 63.4 45.2 26.0 45.5 56.5
Focal-T T 39 265 43.7 - - - - -
PoolFormer-S36 T 41 272 39.5 60.5 41.8 22.5 42.9 52.4
PVTV2-B2 T 35 281 44.6 65.7 47.6 28.6 48.5 59.2
CMT-S H 45 231 44.3 65.5 47.5 27.1 48.3 59.1
MogaNet-S C 35 253 45.8 66.6 49.0 29.1 50.1 59.8
ResNet-101 C 57 315 38.5 57.8 41.2 21.4 42.6 51.1
PVT-M T 54 258 41.9 63.1 44.3 25.0 44.9 57.6
Focal-S T 62 367 45.6 - - - - -
PVTV2-B3 T 55 263 46.0 67.0 49.5 28.2 50.0 61.3
PVTV2-B4 T 73 315 46.3 67.0 49.6 29.0 50.1 62.7
MogaNet-B C 54 355 47.7 68.9 51.0 30.5 52.2 61.7
ResNeXt-101-64 C 95 473 41.0 60.9 44.0 23.9 45.2 54.0
PVTV2-B5 T 92 335 46.1 66.6 49.5 27.8 50.2 62.0
MogaNet-L C 92 477 48.7 69.5 52.6 31.5 53.4 62.7

Table A8: Object detection with RetinaNet (1⇥ training schedule) on COCO val2017. The FLOPs
are measured at resolution 800⇥ 1280.

224
2 resolutions outperforms DeiT-T under the refined training scheme by 1.2% with only 3M

parameters.

D MORE COMPARISON EXPERIMENTS

D.1 FAST TRAINING ON IMAGENET-1K

In addition to Sec. 5.1, we further provide comparison results for 100 and 300 epochs training on
ImageNet-1K. As for 100-epoch training, we adopt the original RSB A3 (Wightman et al., 2021)
setting for all methods, which adopts LAMB (You et al., 2020) optimizer and a small training res-
olution of 1602. We search the basic learning in {0.006, 0.008} for all architectures and adopt the
gradient clipping for Transformer-based networks. As for 300-epoch training, we report results of

28

Published as a conference paper at ICLR 2024

Architecture Type #P. FLOPs Cascade Mask R-CNN +MS 3⇥
(M) (G) APbb APb

50 APb

75 APm APm

50 APm

75
ResNet-50 C 77 739 46.3 64.3 50.5 40.1 61.7 43.4
Swin-T T 86 745 50.4 69.2 54.7 43.7 66.6 47.3
Focal-T T 87 770 51.5 70.6 55.9 - - -
ConvNeXt-T C 86 741 50.4 69.1 54.8 43.7 66.5 47.3
FocalNet-T (SRF) C 86 746 51.5 70.1 55.8 44.6 67.7 48.4
MogaNet-S C 78 750 51.6 70.8 56.3 45.1 68.7 48.8
ResNet-101-32 C 96 819 48.1 66.5 52.4 41.6 63.9 45.2
Swin-S T 107 838 51.9 70.7 56.3 45.0 68.2 48.8
ConvNeXt-S C 108 827 51.9 70.8 56.5 45.0 68.4 49.1
MogaNet-B C 101 851 52.6 72.0 57.3 46.0 69.6 49.7
Swin-B T 145 982 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B C 146 964 52.7 71.3 57.2 45.6 68.9 49.5
MogaNet-L C 140 974 53.3 71.8 57.8 46.1 69.2 49.8
Swin-L‡ T 253 1382 53.9 72.4 58.8 46.7 70.1 50.8
ConvNeXt-L‡ C 255 1354 54.8 73.8 59.8 47.6 71.3 51.7
ConvNeXt-XL‡ C 407 1898 55.2 74.2 59.9 47.7 71.6 52.2
RepLKNet-31L‡ C 229 1321 53.9 72.5 58.6 46.5 70.0 50.6
HorNet-L‡ C 259 1399 56.0 - - 48.6 - -
MogaNet-XL‡ C 238 1355 56.2 75.0 61.2 48.8 72.6 53.3

Table A10: Object detection and instance segmentation with Cascade Mask R-CNN (3⇥ training
schedule) with multi-scaling training (MS) on COCO val2017. ‡ denotes the model is pre-trained
on ImageNet-21K. The FLOPs are measured at resolution 800⇥ 1280.

T/S/B by 4.5/3.1/2.5 and 2.5/2.5/2.4 with similar parameters and computational overloads. Notice-
ably, MogaNet-XT/T can achieve better detection results with fewer parameters and lower FLOPs
than lightweight architectures, while MogaNet-T even surpasses some Transformers like Swin-S
and PVT-S. For example, Mask R-CNN with MogaNet-T improves Swin-T by 0.4 APb and out-
performs PVT-S by 1.3 APm using only around 2/3 parameters. As shown in Table A10, Cascade
Mask R-CNN with MogaNet variants still achieves the state-of-the-art detection and segmentation
results when training 3⇥ schedule with multi-scaling (MS) and advanced augmentations. For ex-
ample, MogaNet-L/XL yield 53.3/56.2 APb and 46.1/48.8 APm, which improves Swin-B/L and
ConvNeXt-B/L by 1.4/2.3 and 0.6/1.4 APb with similar parameters and FLOPS.

D.3 SEMENTIC SEGMENTATION RESULTS ON ADE20K

In addition to Sec. 5.2, we provide comprehensive comparison results of semantic segmentation
based on UperNet on ADE20K. As shown in Table A11, UperNet with MogaNet produces state-
of-the-art performances in a wide range of parameter scales compared to famous Transformer, hy-
brid, and convolution models. As for the lightweight models, MogaNet-XT/T significantly im-
proves ResNet-18/50 with fewer parameters and FLOPs budgets. As for medium-scaling models,
MogaNet-S/B achieves 49.2/50.1 mIoUss, which outperforms the recently proposed ConvNets, e.g.,

+1.1 over HorNet-T using similar parameters and +0.7 over SLaK-S using 17M fewer parameters.
As for large models, MogaNet-L/XL surpass Swin-B/L and ConvNeXt-B/L by 1.2/1.9 and 1.8/0.3
mIoUss while using fewer parameters.

D.4 2D HUMAN POSE ESTIMATION RESULTS ON COCO

In addition to Sec. 5.2, we provide comprehensive experiment results of 2D human key points esti-
mation based on Top-Down SimpleBaseline on COCO. As shown in Table A13, MogaNet variants
achieve competitive or state-of-the-art performances compared to popular architectures with two
types of resolutions. As for lightweight models, MogaNet-XT/T significantly improves the perfor-
mances of existing models while using similar parameters and FLOPs. Meanwhile, MogaNet-S/B
also produces 74.9/75.3 and 76.4/77.3 AP using 256⇥192 and 384⇥288 resolutions, outperforming
Swin-B/L by 2.0/1.0 and 1.5/1.0 AP with nearly half of the parameters and computation budgets.
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• Object Detection: RetinaNet.

• Instance Segmentation: (Cascade) 
Mask R-CNN.

• Multi-scale fine-tuning with IN-21K 
pre-trained models.
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Inference input size 800×1280
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Architecture Date Type Crop Param. FLOPs mIoUss

size (M) (G) (%)
ResNet-18 CVPR’2016 C 5122 41 885 39.2
MogaNet-XT Ours C 5122 30 856 42.2
ResNet-50 CVPR’2016 C 5122 67 952 42.1
MogaNet-T Ours C 5122 33 862 43.7
DeiT-S ICML’2021 T 5122 52 1099 44.0
Swin-T ICCV’2021 T 5122 60 945 46.1
TwinsP-S NIPS’2021 T 5122 55 919 46.2
Twins-S NIPS’2021 T 5122 54 901 46.2
Focal-T NIPS’2021 T 5122 62 998 45.8
Uniformer-Sh32 ICLR’2022 H 5122 52 955 47.0
UniFormer-S ICLR’2022 H 5122 52 1008 47.6
ConvNeXt-T CVPR’2022 C 5122 60 939 46.7
FocalNet-T (SRF) NIPS’2022 C 5122 61 944 46.5
HorNet-T7⇥7 NIPS’2022 C 5122 52 926 48.1
MogaNet-S Ours C 5122 55 946 49.2
Swin-S ICCV’2021 T 5122 81 1038 48.1
Twins-B NIPS’2021 T 5122 89 1020 47.7
Focal-S NIPS’2021 T 5122 85 1130 48.0
Uniformer-Bh32 ICLR’2022 H 5122 80 1106 49.5
ConvNeXt-S CVPR’2022 C 5122 82 1027 48.7
FocalNet-S (SRF) NIPS’2022 C 5122 83 1035 49.3
SLaK-S ICLR’2023 C 5122 91 1028 49.4
MogaNet-B Ours C 5122 74 1050 50.1
Swin-B ICCV’2021 T 5122 121 1188 49.7
Focal-B NIPS’2021 T 5122 126 1354 49.0
ConvNeXt-B CVPR’2022 C 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 C 5122 112 1170 49.9
FocalNet-B (SRF) NIPS’2022 C 5122 124 1180 50.2
SLaK-B ICLR’2023 C 5122 135 1185 50.2
MogaNet-L Ours C 5122 113 1176 50.9
Swin-L‡ ICCV’2021 T 6402 234 2468 52.1
ConvNeXt-L‡ CVPR’2022 C 6402 245 2458 53.7
RepLKNet-31L‡ CVPR’2022 C 6402 207 2404 52.4
MogaNet-XL‡ Ours C 6402 214 2451 54.0

Table A11: Semantic segmentation with UperNet (160K) on ADE20K validation set. ‡ indicates
using IN-21K pre-trained models. The FLOPs are measured at 512⇥2048 or 640⇥2560 resolutions.

Architecture Hand Face
Type #P. FLOPs PA-MPJPE #P. FLOPs 3DRMSE

(M) (G) (mm)# (M) (G) #
MobileNetV2 C 4.8 0.3 8.33 4.9 0.4 2.64
ResNet-18 C 13.0 1.8 7.51 13.1 2.4 2.40
MogaNet-T C 6.5 1.1 6.82 6.6 1.5 2.36
ResNet-50 C 26.9 4.1 6.85 27.0 5.4 2.48
ResNet-101 C 45.9 7.9 6.44 46.0 10.3 2.47
DeiT-S T 23.4 4.3 7.86 23.5 5.5 2.52
Swin-T T 30.2 4.6 6.97 30.3 6.1 2.45
Swin-S T 51.0 13.8 6.50 50.9 8.5 2.48
ConvNeXt-T C 29.9 4.5 6.18 30.0 5.8 2.34
ConvNeXt-S C 51.5 8.7 6.04 51.6 11.4 2.27
HorNet-T C 23.7 4.3 6.46 23.8 5.6 2.39
MogaNet-S C 26.6 5.0 6.08 26.7 6.5 2.24

Table A12: 3D human pose estimation with ExPose on FFHQ and FreiHAND datasets. The face
and hand tasks use pre-vertex and pre-joint errors as the metric. The FLOPs of the face and hand
tasks are measured with input images at 2562 and 224

2 resolutions.
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Architecture Date Type Image Param. FLOPs Top-1
Size (M) (G) Acc (%)

ResNet-18 CVPR’2016 C 224
2 11.7 1.80 71.5

ShuffleNetV2 2⇥ ECCV’2018 C 224
2 5.5 0.60 75.4

EfficientNet-B0 ICML’2019 C 224
2 5.3 0.39 77.1

RegNetY-800MF CVPR’2020 C 224
2 6.3 0.80 76.3

DeiT-T† ICML’2021 T 224
2 5.7 1.08 74.1

PVT-T ICCV’2021 T 224
2 13.2 1.60 75.1

T2T-ViT-7 ICCV’2021 T 224
2 4.3 1.20 71.7

ViT-C NIPS’2021 T 224
2 4.6 1.10 75.3

SReT-TDistill ECCV’2022 T 224
2 4.8 1.10 77.6

PiT-Ti ICCV’2021 H 224
2 4.9 0.70 74.6

LeViT-S ICCV’2021 H 224
2 7.8 0.31 76.6

CoaT-Lite-T ICCV’2021 H 224
2 5.7 1.60 77.5

Swin-1G ICCV’2021 H 224
2 7.3 1.00 77.3

MobileViT-S ICLR’2022 H 256
2 5.6 4.02 78.4

MobileFormer-294M CVPR’2022 H 224
2 11.4 0.59 77.9

ConvNext-XT CVPR’2022 C 224
2 7.4 0.60 77.5

VAN-B0 CVMJ’2023 C 224
2 4.1 0.88 75.4

ParC-Net-S ECCV’2022 C 256
2 5.0 3.48 78.6

MogaNet-XT Ours C 256
2 3.0 1.04 77.2

MogaNet-T Ours C 224
2 5.2 1.10 79.0

MogaNet-T§ Ours C 256
2 5.2 1.44 80.0

Table 2: IN-1K classification with lightweight
models. § denotes the refined training scheme.
Architecture Date Type Image Param. FLOPs Top-1

Size (M) (G) Acc (%)
Deit-S ICML’2021 T 224

2 22 4.6 79.8
Swin-T ICCV’2021 T 224

2 28 4.5 81.3
CSWin-T CVPR’2022 T 224

2 23 4.3 82.8
LITV2-S NIPS’2022 T 224

2 28 3.7 82.0
CoaT-S ICCV’2021 H 224

2 22 12.6 82.1
CoAtNet-0 NIPS’2021 H 224

2 25 4.2 82.7
UniFormer-S ICLR’2022 H 224

2 22 3.6 82.9
RegNetY-4GF† CVPR’2020 C 224

2 21 4.0 81.5
ConvNeXt-T CVPR’2022 C 224

2 29 4.5 82.1
SLaK-T ICLR’2023 C 224

2 30 5.0 82.5
HorNet-T7⇥7 NIPS’2022 C 224

2 22 4.0 82.8
MogaNet-S Ours C 224

2 25 5.0 83.4
Swin-S ICCV’2021 T 224

2 50 8.7 83.0
Focal-S NIPS’2021 T 224

2 51 9.1 83.6
CSWin-S CVPR’2022 T 224

2 35 6.9 83.6
LITV2-M NIPS’2022 T 224

2 49 7.5 83.3
CoaT-M ICCV’2021 H 224

2 45 9.8 83.6
CoAtNet-1 NIPS’2021 H 224

2 42 8.4 83.3
UniFormer-B ICLR’2022 H 224

2 50 8.3 83.9
FAN-B-Hybrid ICML’2022 H 224

2 50 11.3 83.9
EfficientNet-B6 ICML’2019 C 528

2 43 19.0 84.0
RegNetY-8GF† CVPR’2020 C 224

2 39 8.1 82.2
ConvNeXt-S CVPR’2022 C 224

2 50 8.7 83.1
FocalNet-S (LRF) NIPS’2022 C 224

2 50 8.7 83.5
HorNet-S7⇥7 NIPS’2022 C 224

2 50 8.8 84.0
SLaK-S ICLR’2023 C 224

2 55 9.8 83.8
MogaNet-B Ours C 224

2 44 9.9 84.3
DeiT-B ICML’2021 T 224

2 86 17.5 81.8
Swin-B ICCV’2021 T 224

2 89 15.4 83.5
Focal-B NIPS’2021 T 224

2 90 16.4 84.0
CSWin-B CVPR’2022 T 224

2 78 15.0 84.2
DeiT III-B ECCV’2022 T 224

2 87 18.0 83.8
BoTNet-T7 CVPR’2021 H 256

2 79 19.3 84.2
CoAtNet-2 NIPS’2021 H 224

2 75 15.7 84.1
FAN-B-Hybrid ICML’2022 H 224

2 77 16.9 84.3
RegNetY-16GF CVPR’2020 C 224

2 84 16.0 82.9
ConvNeXt-B CVPR’2022 C 224

2 89 15.4 83.8
RepLKNet-31B CVPR’2022 C 224

2 79 15.3 83.5
FocalNet-B (LRF) NIPS’2022 C 224

2 89 15.4 83.9
HorNet-B7⇥7 NIPS’2022 C 224

2 87 15.6 84.3
SLaK-B ICLR’2023 C 224

2 95 17.1 84.0
MogaNet-L Ours C 224

2 83 15.9 84.7
Swin-L‡ ICCV’2021 T 384

2 197 104 87.3
DeiT III-L‡ ECCV’2022 T 384

2 304 191 87.7
CoAtNet-3‡ NIPS’2021 H 384

2 168 107 87.6
RepLKNet-31L‡ CVPR’2022 C 384

2 172 96 86.6
ConvNeXt-L CVPR’2022 C 224

2 198 34.4 84.3
ConvNeXt-L‡ CVPR’2022 C 384

2 198 101 87.5
ConvNeXt-XL‡ CVPR’2022 C 384

2 350 179 87.8
HorNet-L‡ NIPS’2022 C 384

2 202 102 87.7
MogaNet-XL Ours C 224

2 181 34.5 85.1
MogaNet-XL‡ Ours C 384

2 181 102 87.8

Table 3: IN-1K classification performance with
scaling-up models. ‡ denotes the model is pre-
trained on IN-21K and fine-tuned on IN-1K.

Architecture Data Method Param. FLOPs APb APm

(M) (G) (%) (%)
ResNet-101 CVPR’2016 RetinaNet 57 315 38.5 -
PVT-S ICCV’2021 RetinaNet 34 226 40.4 -
CMT-S CVPR’2022 RetinaNet 45 231 44.3 -
MogaNet-S Ours RetinaNet 35 253 45.8 -
RegNet-1.6G CVPR’2020 Mask R-CNN 29 204 38.9 35.7
PVT-T ICCV’2021 Mask R-CNN 33 208 36.7 35.1
MogaNet-T Ours Mask R-CNN 25 192 42.6 39.1
Swin-T ICCV’2021 Mask R-CNN 48 264 42.2 39.1
Uniformer-S ICLR’2022 Mask R-CNN 41 269 45.6 41.6
ConvNeXt-T CVPR’2022 Mask R-CNN 48 262 44.2 40.1
PVTV2-B2 CVMJ’2022 Mask R-CNN 45 309 45.3 41.2
LITV2-S NIPS’2022 Mask R-CNN 47 261 44.9 40.8
FocalNet-T NIPS’2022 Mask R-CNN 49 267 45.9 41.3
MogaNet-S Ours Mask R-CNN 45 272 46.7 42.2
Swin-S ICCV’2021 Mask R-CNN 69 354 44.8 40.9
Focal-S NIPS’2021 Mask R-CNN 71 401 47.4 42.8
ConvNeXt-S CVPR’2022 Mask R-CNN 70 348 45.4 41.8
HorNet-B7⇥7 NIPS’2022 Mask R-CNN 68 322 47.4 42.3
MogaNet-B Ours Mask R-CNN 63 373 47.9 43.2
Swin-L‡ ICCV’2021 Cascade Mask 253 1382 53.9 46.7
ConvNeXt-L‡ CVPR’2022 Cascade Mask 255 1354 54.8 47.6
RepLKNet-31L‡ CVPR’2022 Cascade Mask 229 1321 53.9 46.5
HorNet-L‡ NIPS’2022 Cascade Mask 259 1399 56.0 48.6
MogaNet-XL‡ Ours Cascade Mask 238 1355 56.2 48.8

Table 4: COCO object detection and instance
segmentation with RetinaNet (1⇥), Mask R-
CNN (1⇥), and Cascade Mask R-CNN (multi-
scale 3⇥). ‡ indicates IN-21K pre-trained mod-
els. The FLOPs are measured at 800⇥ 1280.

Method Architecture Date Crop Param. FLOPs mIoUss

size (M) (G) (%)
PVT-S ICCV’2021 5122 28 161 39.8

Semantic Twins-S NIPS’2021 5122 28 162 44.3
FPN Swin-T ICCV’2021 5122 32 182 41.5

(80K) Uniformer-S ICLR’2022 5122 25 247 46.6
LITV2-S NIPS’2022 5122 31 179 44.3
VAN-B2 CVMJ’2023 5122 30 164 46.7
MogaNet-S Ours 5122 29 189 47.7
DeiT-S ICML’2021 5122 52 1099 44.0
Swin-T ICCV’2021 5122 60 945 46.1
ConvNeXt-T CVPR’2022 5122 60 939 46.7
UniFormer-S ICLR’2022 5122 52 1008 47.6
HorNet-T7⇥7 NIPS’2022 5122 52 926 48.1
MogaNet-S Ours 5122 55 946 49.2
Swin-S ICCV’2021 5122 81 1038 48.1
ConvNeXt-S CVPR’2022 5122 82 1027 48.7

UperNet SLaK-S ICLR’2023 5122 91 1028 49.4
(160K) MogaNet-B Ours 5122 74 1050 50.1

Swin-B ICCV’2021 5122 121 1188 49.7
ConvNeXt-B CVPR’2022 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 5122 112 1170 49.9
SLaK-B ICLR’2023 5122 135 1185 50.2
MogaNet-L Ours 5122 113 1176 50.9
Swin-L‡ ICCV’2021 6402 234 2468 52.1
ConvNeXt-L‡ CVPR’2022 6402 245 2458 53.7
RepLKNet-31L‡ CVPR’2022 6402 207 2404 52.4
MogaNet-XL‡ Ours 6402 214 2451 54.0

Table 5: ADE20K semantic segmentation with
semantic FPN (80K) and UperNet (160K). ‡ in-
dicates using IN-21K pre-trained models. The
FLOPs are measured at 512⇥2048 or 640⇥2560.
Architecture Date Crop Param. FLOPs AP AP50 AP75 AR

size (M) (G) (%) (%) (%) (%)
RSN-18 ECCV’2020 256⇥ 192 9.1 2.3 70.4 88.7 77.9 77.1
MogaNet-T Ours 256⇥ 192 8.1 2.2 73.2 90.1 81.0 78.8
HRNet-W32 CVPR’2019 256⇥ 192 28.5 7.1 74.4 90.5 81.9 78.9
Swin-T ICCV’2021 256⇥ 192 32.8 6.1 72.4 90.1 80.6 78.2
PVTV2-B2 CVML’2022 256⇥ 192 29.1 4.3 73.7 90.5 81.2 79.1
Uniformer-S ICLR’2022 256⇥ 192 25.2 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T CVPR’2022 256⇥ 192 33.1 5.5 73.2 90.0 80.9 78.8
MogaNet-S Ours 256⇥ 192 29.0 6.0 74.9 90.7 82.8 80.1
Uniformer-S ICLR’2022 384⇥ 288 25.2 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T CVPR’2022 384⇥ 288 33.1 33.1 75.3 90.4 82.1 80.5
MogaNet-S Ours 384⇥ 288 29.0 13.5 76.4 91.0 83.3 81.4
HRNet-W48 CVPR’2019 384⇥ 288 63.6 32.9 76.3 90.8 82.0 81.2
Swin-L ICCV’2021 384⇥ 288 203.4 86.9 76.3 91.2 83.0 814
Uniformer-B ICLR’2022 384⇥ 288 53.5 14.8 76.7 90.8 84.0 81.4
MogaNet-B Ours 384⇥ 288 47.4 24.4 77.3 91.4 84.0 82.2

Table 6: COCO 2D human pose estimation
with Top-Down SimpleBaseline. The FLOPs are
measured at 256⇥ 192 or 384⇥ 288.
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• Semantic FPN (80K) with 512×2048 inference 
resolutions.

• UperNet (160K) with 512×2048 or 640×2560 
inference resolutions using IN-1K or IN-21K models.
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Architecture Type Crop #P. FLOPs AP AP50 AP75 AR
size (M) (G) (%) (%) (%) (%)

MobileNetV2 C 256⇥ 192 10 1.6 64.6 87.4 72.3 70.7
ShuffleNetV2 2⇥ C 256⇥ 192 8 1.4 59.9 85.4 66.3 66.4
MogaNet-XT C 256⇥ 192 6 1.8 72.1 89.7 80.1 77.7
RSN-18 C 256⇥ 192 9 2.3 70.4 88.7 77.9 77.1
MogaNet-T C 256⇥ 192 8 2.2 73.2 90.1 81.0 78.8
ResNet-50 C 256⇥ 192 34 5.5 72.1 89.9 80.2 77.6
HRNet-W32 C 256⇥ 192 29 7.1 74.4 90.5 81.9 78.9
Swin-T T 256⇥ 192 33 6.1 72.4 90.1 80.6 78.2
PVT-S T 256⇥ 192 28 4.1 71.4 89.6 79.4 77.3
PVTV2-B2 T 256⇥ 192 29 4.3 73.7 90.5 81.2 79.1
Uniformer-S H 256⇥ 192 25 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T C 256⇥ 192 33 5.5 73.2 90.0 80.9 78.8
MogaNet-S C 256⇥ 192 29 6.0 74.9 90.7 82.8 80.1
ResNet-101 C 256⇥ 192 53 12.4 71.4 89.3 79.3 77.1
ResNet-152 C 256⇥ 192 69 15.7 72.0 89.3 79.8 77.8
HRNet-W48 C 256⇥ 192 64 14.6 75.1 90.6 82.2 80.4
Swin-B T 256⇥ 192 93 18.6 72.9 89.9 80.8 78.6
Swin-L T 256⇥ 192 203 40.3 74.3 90.6 82.1 79.8
Uniformer-B H 256⇥ 192 54 9.2 75.0 90.6 83.0 80.4
ConvNeXt-S C 256⇥ 192 55 9.7 73.7 90.3 81.9 79.3
ConvNeXt-B C 256⇥ 192 94 16.4 74.0 90.7 82.1 79.5
MogaNet-B C 256⇥ 192 47 10.9 75.3 90.9 83.3 80.7
MobileNetV2 C 384⇥ 288 10 3.6 67.3 87.9 74.3 72.9
ShuffleNetV2 2⇥ C 384⇥ 288 8 3.1 63.6 86.5 70.5 69.7
MogaNet-XT C 384⇥ 288 6 4.2 74.7 90.1 81.3 79.9
RSN-18 C 384⇥ 288 9 5.1 72.1 89.5 79.8 78.6
MogaNet-T C 384⇥ 288 8 4.9 75.7 90.6 82.6 80.9
HRNet-W32 C 384⇥ 288 29 16.0 75.8 90.6 82.7 81.0
Uniformer-S H 384⇥ 288 25 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T C 384⇥ 288 33 33.1 75.3 90.4 82.1 80.5
MogaNet-S C 384⇥ 288 29 13.5 76.4 91.0 83.3 81.4
ResNet-152 C 384⇥ 288 69 35.6 74.3 89.6 81.1 79.7
HRNet-W48 C 384⇥ 288 64 32.9 76.3 90.8 82.0 81.2
Swin-B T 384⇥ 288 93 39.2 74.9 90.5 81.8 80.3
Swin-L T 384⇥ 288 203 86.9 76.3 91.2 83.0 814
HRFormer-B T 384⇥ 288 54 30.7 77.2 91.0 83.6 82.0
ConvNeXt-S C 384⇥ 288 55 21.8 75.8 90.7 83.1 81.0
ConvNeXt-B C 384⇥ 288 94 36.6 75.9 90.6 83.1 81.1
Uniformer-B C 384⇥ 288 54 14.8 76.7 90.8 84.0 81.4
MogaNet-B C 384⇥ 288 47 24.4 77.3 91.4 84.0 82.2

Table A13: 2D human pose estimation with Top-Down SimpleBaseline on COCO val2017. The
FLOPs are measured at 256⇥ 192 or 384⇥ 288 resolutions.

D.5 3D HUMAN POSE ESTIMATION RESULTS

In addition to Sec. 5.2, we evaluate popular ConvNets and MogaNet for 3D human pose estimation
tasks based on ExPose (Choutas et al., 2020). As shown in Table A12, MogaNet achieves lower
regression errors with efficient usage of parameters and computational overheads. Compared to
lightweight architectures, MogaNet-T achieves 6.82 MPJPE and 2.36 3DRMSE on hand and face
reconstruction tasks, improving ResNet-18 and MobileNetV2 1⇥ by 1.29/0.04 and 1.51/0.28. Com-
pared to models around 25⇠50M parameters, MogaNet-S surpasses ResNet-101 and ConvNeXt-T,
achieving competitive results as ConvNeXt-S with relatively smaller parameters and FLOPs (e.g.,

27M/6.5G vs 52M/11.4G on FFHP). Notice that some backbones with more parameters produce
worse results than their lightweight variants on the face estimation tasks (e.g., ResNet-50 and Swin-
S), while MogaNet-S still yields the better performance of 2.24 3DRMSE.
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Architecture Type Crop #P. FLOPs AP AP50 AP75 AR
size (M) (G) (%) (%) (%) (%)

MobileNetV2 C 256⇥ 192 10 1.6 64.6 87.4 72.3 70.7
ShuffleNetV2 2⇥ C 256⇥ 192 8 1.4 59.9 85.4 66.3 66.4
MogaNet-XT C 256⇥ 192 6 1.8 72.1 89.7 80.1 77.7
RSN-18 C 256⇥ 192 9 2.3 70.4 88.7 77.9 77.1
MogaNet-T C 256⇥ 192 8 2.2 73.2 90.1 81.0 78.8
ResNet-50 C 256⇥ 192 34 5.5 72.1 89.9 80.2 77.6
HRNet-W32 C 256⇥ 192 29 7.1 74.4 90.5 81.9 78.9
Swin-T T 256⇥ 192 33 6.1 72.4 90.1 80.6 78.2
PVT-S T 256⇥ 192 28 4.1 71.4 89.6 79.4 77.3
PVTV2-B2 T 256⇥ 192 29 4.3 73.7 90.5 81.2 79.1
Uniformer-S H 256⇥ 192 25 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T C 256⇥ 192 33 5.5 73.2 90.0 80.9 78.8
MogaNet-S C 256⇥ 192 29 6.0 74.9 90.7 82.8 80.1
ResNet-101 C 256⇥ 192 53 12.4 71.4 89.3 79.3 77.1
ResNet-152 C 256⇥ 192 69 15.7 72.0 89.3 79.8 77.8
HRNet-W48 C 256⇥ 192 64 14.6 75.1 90.6 82.2 80.4
Swin-B T 256⇥ 192 93 18.6 72.9 89.9 80.8 78.6
Swin-L T 256⇥ 192 203 40.3 74.3 90.6 82.1 79.8
Uniformer-B H 256⇥ 192 54 9.2 75.0 90.6 83.0 80.4
ConvNeXt-S C 256⇥ 192 55 9.7 73.7 90.3 81.9 79.3
ConvNeXt-B C 256⇥ 192 94 16.4 74.0 90.7 82.1 79.5
MogaNet-B C 256⇥ 192 47 10.9 75.3 90.9 83.3 80.7
MobileNetV2 C 384⇥ 288 10 3.6 67.3 87.9 74.3 72.9
ShuffleNetV2 2⇥ C 384⇥ 288 8 3.1 63.6 86.5 70.5 69.7
MogaNet-XT C 384⇥ 288 6 4.2 74.7 90.1 81.3 79.9
RSN-18 C 384⇥ 288 9 5.1 72.1 89.5 79.8 78.6
MogaNet-T C 384⇥ 288 8 4.9 75.7 90.6 82.6 80.9
HRNet-W32 C 384⇥ 288 29 16.0 75.8 90.6 82.7 81.0
Uniformer-S H 384⇥ 288 25 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T C 384⇥ 288 33 33.1 75.3 90.4 82.1 80.5
MogaNet-S C 384⇥ 288 29 13.5 76.4 91.0 83.3 81.4
ResNet-152 C 384⇥ 288 69 35.6 74.3 89.6 81.1 79.7
HRNet-W48 C 384⇥ 288 64 32.9 76.3 90.8 82.0 81.2
Swin-B T 384⇥ 288 93 39.2 74.9 90.5 81.8 80.3
Swin-L T 384⇥ 288 203 86.9 76.3 91.2 83.0 814
HRFormer-B T 384⇥ 288 54 30.7 77.2 91.0 83.6 82.0
ConvNeXt-S C 384⇥ 288 55 21.8 75.8 90.7 83.1 81.0
ConvNeXt-B C 384⇥ 288 94 36.6 75.9 90.6 83.1 81.1
Uniformer-B C 384⇥ 288 54 14.8 76.7 90.8 84.0 81.4
MogaNet-B C 384⇥ 288 47 24.4 77.3 91.4 84.0 82.2

Table A13: 2D human pose estimation with Top-Down SimpleBaseline on COCO val2017. The
FLOPs are measured at 256⇥ 192 or 384⇥ 288 resolutions.

D.5 3D HUMAN POSE ESTIMATION RESULTS

In addition to Sec. 5.2, we evaluate popular ConvNets and MogaNet for 3D human pose estimation
tasks based on ExPose (Choutas et al., 2020). As shown in Table A12, MogaNet achieves lower
regression errors with efficient usage of parameters and computational overheads. Compared to
lightweight architectures, MogaNet-T achieves 6.82 MPJPE and 2.36 3DRMSE on hand and face
reconstruction tasks, improving ResNet-18 and MobileNetV2 1⇥ by 1.29/0.04 and 1.51/0.28. Com-
pared to models around 25⇠50M parameters, MogaNet-S surpasses ResNet-101 and ConvNeXt-T,
achieving competitive results as ConvNeXt-S with relatively smaller parameters and FLOPs (e.g.,

27M/6.5G vs 52M/11.4G on FFHP). Notice that some backbones with more parameters produce
worse results than their lightweight variants on the face estimation tasks (e.g., ResNet-50 and Swin-
S), while MogaNet-S still yields the better performance of 2.24 3DRMSE.
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Architecture Type Crop #P. FLOPs AP AP50 AP75 AR
size (M) (G) (%) (%) (%) (%)

MobileNetV2 C 256⇥ 192 10 1.6 64.6 87.4 72.3 70.7
ShuffleNetV2 2⇥ C 256⇥ 192 8 1.4 59.9 85.4 66.3 66.4
MogaNet-XT C 256⇥ 192 6 1.8 72.1 89.7 80.1 77.7
RSN-18 C 256⇥ 192 9 2.3 70.4 88.7 77.9 77.1
MogaNet-T C 256⇥ 192 8 2.2 73.2 90.1 81.0 78.8
ResNet-50 C 256⇥ 192 34 5.5 72.1 89.9 80.2 77.6
HRNet-W32 C 256⇥ 192 29 7.1 74.4 90.5 81.9 78.9
Swin-T T 256⇥ 192 33 6.1 72.4 90.1 80.6 78.2
PVT-S T 256⇥ 192 28 4.1 71.4 89.6 79.4 77.3
PVTV2-B2 T 256⇥ 192 29 4.3 73.7 90.5 81.2 79.1
Uniformer-S H 256⇥ 192 25 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T C 256⇥ 192 33 5.5 73.2 90.0 80.9 78.8
MogaNet-S C 256⇥ 192 29 6.0 74.9 90.7 82.8 80.1
ResNet-101 C 256⇥ 192 53 12.4 71.4 89.3 79.3 77.1
ResNet-152 C 256⇥ 192 69 15.7 72.0 89.3 79.8 77.8
HRNet-W48 C 256⇥ 192 64 14.6 75.1 90.6 82.2 80.4
Swin-B T 256⇥ 192 93 18.6 72.9 89.9 80.8 78.6
Swin-L T 256⇥ 192 203 40.3 74.3 90.6 82.1 79.8
Uniformer-B H 256⇥ 192 54 9.2 75.0 90.6 83.0 80.4
ConvNeXt-S C 256⇥ 192 55 9.7 73.7 90.3 81.9 79.3
ConvNeXt-B C 256⇥ 192 94 16.4 74.0 90.7 82.1 79.5
MogaNet-B C 256⇥ 192 47 10.9 75.3 90.9 83.3 80.7
MobileNetV2 C 384⇥ 288 10 3.6 67.3 87.9 74.3 72.9
ShuffleNetV2 2⇥ C 384⇥ 288 8 3.1 63.6 86.5 70.5 69.7
MogaNet-XT C 384⇥ 288 6 4.2 74.7 90.1 81.3 79.9
RSN-18 C 384⇥ 288 9 5.1 72.1 89.5 79.8 78.6
MogaNet-T C 384⇥ 288 8 4.9 75.7 90.6 82.6 80.9
HRNet-W32 C 384⇥ 288 29 16.0 75.8 90.6 82.7 81.0
Uniformer-S H 384⇥ 288 25 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T C 384⇥ 288 33 33.1 75.3 90.4 82.1 80.5
MogaNet-S C 384⇥ 288 29 13.5 76.4 91.0 83.3 81.4
ResNet-152 C 384⇥ 288 69 35.6 74.3 89.6 81.1 79.7
HRNet-W48 C 384⇥ 288 64 32.9 76.3 90.8 82.0 81.2
Swin-B T 384⇥ 288 93 39.2 74.9 90.5 81.8 80.3
Swin-L T 384⇥ 288 203 86.9 76.3 91.2 83.0 814
HRFormer-B T 384⇥ 288 54 30.7 77.2 91.0 83.6 82.0
ConvNeXt-S C 384⇥ 288 55 21.8 75.8 90.7 83.1 81.0
ConvNeXt-B C 384⇥ 288 94 36.6 75.9 90.6 83.1 81.1
Uniformer-B C 384⇥ 288 54 14.8 76.7 90.8 84.0 81.4
MogaNet-B C 384⇥ 288 47 24.4 77.3 91.4 84.0 82.2

Table A13: 2D human pose estimation with Top-Down SimpleBaseline on COCO val2017. The
FLOPs are measured at 256⇥ 192 or 384⇥ 288 resolutions.

D.5 3D HUMAN POSE ESTIMATION RESULTS

In addition to Sec. 5.2, we evaluate popular ConvNets and MogaNet for 3D human pose estimation
tasks based on ExPose (Choutas et al., 2020). As shown in Table A12, MogaNet achieves lower
regression errors with efficient usage of parameters and computational overheads. Compared to
lightweight architectures, MogaNet-T achieves 6.82 MPJPE and 2.36 3DRMSE on hand and face
reconstruction tasks, improving ResNet-18 and MobileNetV2 1⇥ by 1.29/0.04 and 1.51/0.28. Com-
pared to models around 25⇠50M parameters, MogaNet-S surpasses ResNet-101 and ConvNeXt-T,
achieving competitive results as ConvNeXt-S with relatively smaller parameters and FLOPs (e.g.,

27M/6.5G vs 52M/11.4G on FFHP). Notice that some backbones with more parameters produce
worse results than their lightweight variants on the face estimation tasks (e.g., ResNet-50 and Swin-
S), while MogaNet-S still yields the better performance of 2.24 3DRMSE.
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Architecture Date Type Crop Param. FLOPs mIoUss

size (M) (G) (%)
ResNet-18 CVPR’2016 C 5122 41 885 39.2
MogaNet-XT Ours C 5122 30 856 42.2
ResNet-50 CVPR’2016 C 5122 67 952 42.1
MogaNet-T Ours C 5122 33 862 43.7
DeiT-S ICML’2021 T 5122 52 1099 44.0
Swin-T ICCV’2021 T 5122 60 945 46.1
TwinsP-S NIPS’2021 T 5122 55 919 46.2
Twins-S NIPS’2021 T 5122 54 901 46.2
Focal-T NIPS’2021 T 5122 62 998 45.8
Uniformer-Sh32 ICLR’2022 H 5122 52 955 47.0
UniFormer-S ICLR’2022 H 5122 52 1008 47.6
ConvNeXt-T CVPR’2022 C 5122 60 939 46.7
FocalNet-T (SRF) NIPS’2022 C 5122 61 944 46.5
HorNet-T7⇥7 NIPS’2022 C 5122 52 926 48.1
MogaNet-S Ours C 5122 55 946 49.2
Swin-S ICCV’2021 T 5122 81 1038 48.1
Twins-B NIPS’2021 T 5122 89 1020 47.7
Focal-S NIPS’2021 T 5122 85 1130 48.0
Uniformer-Bh32 ICLR’2022 H 5122 80 1106 49.5
ConvNeXt-S CVPR’2022 C 5122 82 1027 48.7
FocalNet-S (SRF) NIPS’2022 C 5122 83 1035 49.3
SLaK-S ICLR’2023 C 5122 91 1028 49.4
MogaNet-B Ours C 5122 74 1050 50.1
Swin-B ICCV’2021 T 5122 121 1188 49.7
Focal-B NIPS’2021 T 5122 126 1354 49.0
ConvNeXt-B CVPR’2022 C 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 C 5122 112 1170 49.9
FocalNet-B (SRF) NIPS’2022 C 5122 124 1180 50.2
SLaK-B ICLR’2023 C 5122 135 1185 50.2
MogaNet-L Ours C 5122 113 1176 50.9
Swin-L‡ ICCV’2021 T 6402 234 2468 52.1
ConvNeXt-L‡ CVPR’2022 C 6402 245 2458 53.7
RepLKNet-31L‡ CVPR’2022 C 6402 207 2404 52.4
MogaNet-XL‡ Ours C 6402 214 2451 54.0

Table A11: Semantic segmentation with UperNet (160K) on ADE20K validation set. ‡ indicates
using IN-21K pre-trained models. The FLOPs are measured at 512⇥2048 or 640⇥2560 resolutions.

Architecture Hand Face
Type #P. FLOPs PA-MPJPE #P. FLOPs 3DRMSE

(M) (G) (mm)# (M) (G) #
MobileNetV2 C 4.8 0.3 8.33 4.9 0.4 2.64
ResNet-18 C 13.0 1.8 7.51 13.1 2.4 2.40
MogaNet-T C 6.5 1.1 6.82 6.6 1.5 2.36
ResNet-50 C 26.9 4.1 6.85 27.0 5.4 2.48
ResNet-101 C 45.9 7.9 6.44 46.0 10.3 2.47
DeiT-S T 23.4 4.3 7.86 23.5 5.5 2.52
Swin-T T 30.2 4.6 6.97 30.3 6.1 2.45
Swin-S T 51.0 13.8 6.50 50.9 8.5 2.48
ConvNeXt-T C 29.9 4.5 6.18 30.0 5.8 2.34
ConvNeXt-S C 51.5 8.7 6.04 51.6 11.4 2.27
HorNet-T C 23.7 4.3 6.46 23.8 5.6 2.39
MogaNet-S C 26.6 5.0 6.08 26.7 6.5 2.24

Table A12: 3D human pose estimation with ExPose on FFHQ and FreiHAND datasets. The face
and hand tasks use pre-vertex and pre-joint errors as the metric. The FLOPs of the face and hand
tasks are measured with input images at 2562 and 224

2 resolutions.
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Moving FashionMNIST We show the quantitative results and qualitative visualization examples in531

Table 6 and Figure 6, respectively. The results are consistent with those of Moving MNIST, where532

recurrent-based models perform well in long-range temporal modeling.533

Table 6: The performance on the Moving FashionMNIST dataset.

Method Params (M) FLOPs (G) FPS MSE # MAE # SSIM " PSNR "
ConvLSTM 15.0 56.8 113 28.87 113.20 0.8793 22.07

PredNet 12.5 8.4 659 185.94 318.30 0.6713 14.83
PredRNN 23.8 116.0 54 22.01 91.74 0.9091 23.42

PredRNN++ 38.6 171.7 38 21.71 91.97 0.9097 23.45
MIM 38.0 179.2 37 23.09 96.37 0.9043 23.13

E3D-LSTM 51.0 298.9 18 35.35 110.09 0.8722 21.27
PhyDNet 3.1 15.3 182 34.75 125.66 0.8567 22.03

MAU 4.5 17.8 201 26.56 104.39 0.8916 22.51
PredRNNv2 23.9 116.6 52 24.13 97.46 0.9004 22.96

Recurrent-based

DMVFN 3.5 0.2 1145 118.32 220.02 0.7572 16.76
SimVP 58.0 19.4 209 30.77 113.94 0.8740 21.81
TAU 44.7 16.0 283 24.24 96.72 0.8995 22.87

SimVPv2 46.8 16.5 282 25.86 101.22 0.8933 22.61
ViT 46.1 16.9 290 31.05 115.59 0.8712 21.83

Swin Transformer 46.1 16.4 294 28.66 108.93 0.8815 22.08
Uniformer 44.8 16.5 296 29.56 111.72 0.8779 21.97

MLP-Mixer 38.2 14.7 334 28.83 109.51 0.8803 22.01
ConvMixer 3.9 5.5 658 31.21 115.74 0.8709 21.71
Poolformer 37.1 14.1 341 30.02 113.07 0.8750 21.95
ConvNext 37.3 14.1 344 26.41 102.56 0.8908 22.49

VAN 44.5 16.0 288 31.39 116.28 0.8703 22.82
HorNet 45.7 16.3 287 29.19 110.17 0.8796 22.03

Recurrent-free

MogaNet 46.8 16.5 255 25.14 99.69 0.8960 22.73

Moving MNIST-CIFAR The quantitative results are presented in Table 7, while the qualitative534

visualizations are depicted in Figure 7. As the task involves more complex backgrounds, the models535

are required to pay greater attention to spatial modeling. Consequently, the gap between recurrent-536

based and recurrent-free models is narrowed.537

Table 7: The performance on the Moving MNIST-CIFAR dataset.

Method Params (M) FLOPs (G) FPS MSE # MAE # SSIM " PSNR "
ConvLSTM 15.0 56.8 113 73.31 338.56 0.9204 23.09

PredNet 12.5 8.4 659 286.70 514.14 0.8139 17.49
PredRNN 23.8 116.0 54 50.09 225.04 0.9499 24.90

PredRNN++ 38.6 171.7 38 44.19 198.27 0.9567 25.60
MIM 38.0 179.2 37 48.63 213.44 0.9521 25.08

E3D-LSTM 51.0 298.9 18 80.79 214.86 0.9314 22.89
PhyDNet 3.1 15.3 182 142.54 700.37 0.8276 19.92

MAU 4.5 17.8 201 58.84 255.76 0.9408 24.19
PredRNNv2 23.9 116.6 52 57.27 252.29 0.9419 24.24

Recurrent-based

DMVFN 3.5 0.2 1145 298.73 606.92 0.7765 17.07
SimVP 58.0 19.4 209 59.83 214.54 0.9414 24.15
TAU 44.7 16.0 283 48.17 177.35 0.9539 25.21

SimVPv2 46.8 16.5 282 51.13 185.13 0.9512 24.93
ViT 46.1 16.9 290 64.94 234.01 0.9354 23.90

Swin Transformer 46.1 16.4 294 57.11 207.45 0.9443 24.34
Uniformer 44.8 16.5 296 56.96 207.51 0.9442 24.38

MLP-Mixer 38.2 14.7 334 57.03 206.46 0.9446 24.34
ConvMixer 3.9 5.5 658 59.29 219.76 0.9403 24.17
Poolformer 37.1 14.1 341 60.98 219.50 0.9399 24.16
ConvNext 37.3 14.1 344 51.39 187.17 0.9503 24.89

VAN 44.5 16.0 288 59.59 221.32 0.9398 25.20
HorNet 45.7 16.3 287 55.79 202.73 0.9456 24.49

Recurrent-free

MogaNet 46.8 16.5 255 49.48 184.11 0.9521 25.07

17

Published as a conference paper at ICLR 2024

D.6 VIDEO PREDICTION RESULTS ON MOVING MNIST

In addition to Sec. 5.2, We verify video prediction performances of various architectures by replac-
ing the hidden translator in SimVP with the architecture blocks. All models use the same number
of network blocks and have similar parameters and FLOPs. As shown in Table A14, Compared to
Transformer-based and Metaformer-based architectures, pure ConvNets usually achieve lower pre-
diction errors. When training 200 epochs, it is worth noticing that using MogaNet blocks in SimVP
significantly improves the SimVP baseline by 6.58/13.86 MSE/MAE and outperforms ConvNeXt
and HorNet by 1.37 and 4.07 MSE. MogaNet also holds the best performances in the extended
2000-epoch training setting.

Architecture #P. FLOPs FPS 200 epochs 2000 epochs
(M) (G) (s) MSE# MAE# SSIM" MSE# MAE# SSIM"

ViT 46.1 16.9 290 35.15 95.87 0.9139 19.74 61.65 0.9539
Swin 46.1 16.4 294 29.70 84.05 0.9331 19.11 59.84 0.9584
Uniformer 44.8 16.5 296 30.38 85.87 0.9308 18.01 57.52 0.9609
MLP-Mixer 38.2 14.7 334 29.52 83.36 0.9338 18.85 59.86 0.9589
ConvMixer 3.9 5.5 658 32.09 88.93 0.9259 22.30 67.37 0.9507
Poolformer 37.1 14.1 341 31.79 88.48 0.9271 20.96 64.31 0.9539
SimVP 58.0 19.4 209 32.15 89.05 0.9268 21.15 64.15 0.9536
ConvNeXt 37.3 14.1 344 26.94 77.23 0.9397 17.58 55.76 0.9617
VAN 44.5 16.0 288 26.10 76.11 0.9417 16.21 53.57 0.9646
HorNet 45.7 16.3 287 29.64 83.26 0.9331 17.40 55.70 0.9624
MogaNet 46.8 16.5 255 25.57 75.19 0.9429 15.67 51.84 0.9661

Table A14: Video prediction with SimVP on Moving MNIST. The FLOPs and FPS are measured
at the input tensor of 10⇥ 1⇥ 64⇥ 64 on an NVIDIA Tesla V100 GPU.

E EXTENSIVE RELATED WORK

Convolutional Neural Networks ConvNets (LeCun et al., 1998; Krizhevsky et al., 2012; He et al.,
2016) have dominated a wide range of computer vision (CV) tasks for decades. VGG (Simonyan
& Zisserman, 2014) proposes a modular network design strategy, stacking the same type of blocks
repeatedly, which simplifies both the design workflow and transfer learning for downstream tasks.
ResNet (He et al., 2016) introduces identity skip connections and bottleneck modules that alleviate
training difficulties (e.g., vanishing gradient). With the desired properties, ResNet and its vari-
ants (Zagoruyko & Komodakis, 2016; Xie et al., 2017; Hu et al., 2018; Zhang et al., 2022a) have
become the most widely adopted ConvNet architectures in numerous CV applications. For practical
usage, efficient models (Ma et al., 2018; Howard et al., 2017; Sandler et al., 2018; Howard et al.,
2019; Tan & Le, 2019; Radosavovic et al., 2020) are designed for a complexity-accuracy trade-off
and hardware devices. Since the limited reception fields, spatial and temporal convolutions strug-
gle to capture global dependency (Luo et al., 2016). Various spatial-wise or channel-wise attention
strategies (Dai et al., 2017; Hu et al., 2018; Wang et al., 2018; Woo et al., 2018; Cao et al., 2019) are
introduced. Recently, taking the merits of Transformer-like macro design (Dosovitskiy et al., 2021),
modern ConvNets (Trockman & Kolter, 2022; Ding et al., 2022b; Liu et al., 2023; Rao et al., 2022;
Kirchmeyer & Deng, 2023) show thrilling performance with large depth-wise convolutions (Han
et al., 2021b) for global contextual features. Among them, VAN (Guo et al., 2023), FocalNet (Yang
et al., 2022), HorNet (Rao et al., 2022), and Conv2Former (Hou et al., 2022) exploit multi-scale
convolutional kernels with gating operations. However, these methods fail to ensure the networks
learn the inherently overlooked features (Deng et al., 2022) and achieve ideal contextual aggrega-
tion. Unlike the previous works, we first design three groups of multi-order depth-wise convolutions
in parallel followed by a double-branch activated gating operation, and then propose a channel ag-
gregation module to enforce the network to learn informative features of various interaction scales.

Vision Transformers Transformer (Vaswani et al., 2017) with self-attention mechanism has be-
come the mainstream choice in natural language processing (NLP) community (Devlin et al., 2018;
Brown et al., 2020). Considering that global information is also essential for CV tasks, Vision
Transformer (ViT) (Dosovitskiy et al., 2021) is proposed and has achieved promising results on
ImageNet (Deng et al., 2009). In particular, ViT splits raw images into non-overlapping fixed-
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• Replacing the MetaFormer blocks in SimVP.

• Comparison with MMNIST and MMNIST-CIFAR.
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problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . . ) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

B.1 HiPPO Diagonalization

Proof of Lemma 3.2. The HiPPO matrix (2) is equal, up to sign and conjugation by a diagonal matrix, to

A =

2

66666666666664

1
�1 2
1 �3 3
�1 3 �5 4
1 �3 5 �7 5
�1 3 �5 7 �9 6
1 �3 5 �7 9 �11 7
�1 3 �5 7 �9 11 �13 8
...

. . .

3

77777777777775

Ank =

8
><

>:

(�1)n�k(2k + 1) n > k

k + 1 n = k

0 n < k

.

Our goal is to show that this A is diagonalized by the matrix

V =

✓
i+ j

i� j

◆

ij

=

2

6666666664

1
1 1
1 3 1
1 6 5 1
1 10 15 7 1
1 15 35 28 9 1
...

. . .

3

7777777775

,

or in other words that columns of this matrix are eigenvectors of A.

Concretely, we will show that the j-th column of this matrix v(j) with elements

v(j)
i =

(
0 i < j�i+j
i�j

�
=

�i+j
2j

�
i � j

is an eigenvector with eigenvalue j + 1. In other words we must show that for all indices k 2 [N ],

(Av(j))k =
X

i

Akiv
(j)
i = (j + 1)v(j)

k . (7)

If k < j, then for all i inside the sum, either k < i or i < j. In the first case Aki = 0 and in the second case

v(j)
i = 0, so both sides of equation (7) are equal to 0.

It remains to show the case k � j, which proceeds by induction on k. Expanding equation (7) using the
formula for A yields

(Av)(j)k =
X

i

Akiv
(j)
i =

k�1X

i=j

(�1)k�i(2i+ 1)

✓
i+ j

2j

◆
+ (k + 1)

✓
k + j

2j

◆
.

In the base case k = j, the sum disappears and we are left with (Av(j))j = (j + 1)
�2j
2j

�
= (j + 1)v(j)

j , as
desired.

Otherwise, the sum for (Av)(j)k is the same as the sum for (Av)(j)k�1 but with sign reversed and a few edge
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Figure 1: (Overview.) Structured SSMs independently map each channel (e.g. � = 5) of an input � to output � through a higher
dimensional latent state� (e.g.� = 4). Prior SSMs avoidmaterializing this large e�ective state (��, times batch size� and sequence
length �) through clever alternate computation paths requiring time-invariance: the (�,A,B,C) parameters are constant across
time. Our selection mechanism adds back input-dependent dynamics, which also requires a careful hardware-aware algorithm to
only materialize the expanded states in more e�cient levels of the GPU memory hierarchy.

2 State Space Models
Structured state space sequence models (S4) are a recent class of sequence models for deep learning that are
broadly related to RNNs, and CNNs, and classical state space models. They are inspired by a particular continuous
system (1) that maps a 1-dimensional function or sequence �(�) � �� �(�) � � through an implicit latent state
�(�) � �� .

Concretely, S4 models are defined with four parameters (�,A,B,C), which define a sequence-to-sequence trans-
formation in two stages.

��(�) = A�(�) +B�(�) (1a)
�(�) = C�(�) (1b)

�� = A���1 +B�� (2a)
�� = C�� (2b)

� = (C�,C��,… ,C�
�
�,… ) (3a)

� = � � � (3b)

Discretization. The first stage transforms the “continuous parameters” (�,A,B) to “discrete parameters” (A,B)
through fixed formulas A = ��(�,A) and B = ��(�,A,B), where the pair (��,��) is called a discretization rule.
Various rules can be used such as the zero-order hold (ZOH) defined in equation (4).

A = exp(�A) B = (�A)�1(exp(�A) � I) � �B (4)

Discretization has deep connections to continuous-time systems which can endow them with additional properties
such as resolution invariance (Nguyen, Goel, et al. 2022) and automatically ensuring that the model is properly
normalized (Gu, Johnson, Timalsina, et al. 2023; Orvieto et al. 2023). It also has connections to gating mechanisms
of RNNs (Gu, Gulcehre, et al. 2020; Tallec and Ollivier 2018) which we will revisit in Section 3.5. However, from
a mechanical point of view discretization can simply be viewed as the first step of the computation graph in the
forward pass of an SSM. Alternate flavors of SSMs can bypass the discretization step and parameterize (A,B)
directly instead (Zhang et al. 2023), which may be easier to reason about.

Computation. After the parameters have been transformed from (�,A,B,C)� (A,B,C), the model can be
computed in two ways, either as a linear recurrence (2) or a global convolution (3).

3

H3 Gated MLP Mamba

Linear 
projection

Sequence 
transformation

Nonlinearity 
(activation or 
multiplication)

XX X

!

X
Conv

SSM

X !!

Conv

SSM

⨂
Figure 3: (Architecture.) Our simpli�ed block design combines the H3 block, which is the basis of most SSM architectures, with
the ubiquitous MLP block of modern neural networks. Instead of interleaving these two blocks, we simply repeat the Mamba block
homogenously. Compared to the H3 block, Mamba replaces the �rst multiplicative gate with an activation function. Compared to
the MLP block, Mamba adds an SSM to the main branch. For � we use the SiLU / Swish activation (Hendrycks and Gimpel 2016;
Ramachandran, Zoph, and Quoc V Le 2017).

the matrix A) are much smaller in comparison. We repeat this block, interleaved with standard normalization
and residual connections, to form the Mamba architecture. We always fix to � = 2 in our experiments and use two
stacks of the block to match the 12�2 parameters of a Transformer’s interleaved MHA (multi-head attention) and
MLP blocks. We use the SiLU / Swish activation function (Hendrycks and Gimpel 2016; Ramachandran, Zoph,
and Quoc V Le 2017), motivated so that the Gated MLP becomes the popular “SwiGLU” variant (Chowdhery
et al. 2023; Shazeer 2020; Touvron et al. 2023). Finally, we additionally use an optional normalization layer (we
choose LayerNorm (J. L. Ba, Kiros, and Hinton 2016)), motivated by RetNet’s usage of a normalization layer in a
similar location (Y. Sun et al. 2023).

3.5 Properties of Selection Mechanisms
The selection mechanism is a broader concept that can be applied in different ways, such as to more traditional
RNNs or CNNs, to different parameters (e.g. A in Algorithm 2), or using different transformations �(�).

3.5.1 Connection to Gating Mechanisms

We highlight the most important connection: the classical gating mechanism of RNNs is an instance of our selection
mechanism for SSMs. We note that the connection between RNN gating and the discretization of continuous-time
systems is well established (Funahashi and Nakamura 1993; Tallec and Ollivier 2018). In fact, Theorem 1 is
an improvement of Gu, Johnson, Goel, et al. (2021, Lemma 3.1) generalizing to the ZOH discretization and
input-dependent gates (proof in Appendix C). More broadly, � in SSMs can be seen to play a generalized role
of the RNN gating mechanism. In line with prior work, we adopt the view that discretization of SSMs is the
principled foundation of heuristic gating mechanisms.

Theorem 1. When � = 1,A = �1,B = 1, �� = ������(�), and �� = ��������, then the selective SSM recurrence
(Algorithm 2) takes the form

�� = �(������(��))
�� = (1 � ��)���1 + ����.

(5)

As mentioned in Section 3.2, our specific choices of ��, �� is from this connection. In particular, note that if a
given input �� should be completely ignored (as necessary in the synthetic tasks), all � channels should ignore it,
and so we project the input down to 1 dimension before repeating/broadcasting with �.
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Figure 2: Comparison of information flow: Attention vs. Cross-Scan Module (CSM). (a)
The attention mechanism uniformly integrates all pixels for the center pixel, resulting in O(N2)
complexity. (b) CSM integrates pixels from top-left, bottom-right, top-right, and bottom-left with
O(N) complexity.

pixel-level 1-D image classification [15], few of them pay attention in visual recognition. The most
similar work to ours is S4ND [35]. S4ND is the first work applying state space mechanism into
visual tasks and showing the potential that its performance may compete with ViT [10]. However,
S4ND expands the S4 model in a simple manner, fails on efficiently capturing image information
in an input-dependent manner. We demonstrates that with selective scan mechanism introduced by
mamba [12], the proposed VMamba is able to match existing popular vision foundation models like
ResNet [19], ViT [10], swin [27], and convnext [29], showcasing the potential of VMamba to be the
powerful foundation model.

3 Method

In this section, we start by introducing the preliminary concepts related to VMamba, including the
state space models, the discretization process, and the selective scan mechanism. We then provide
detailed specifications of the 2D state space model which serves as the core element of VMamba.
Finally, we present a comprehensive discussion of the overall VMamba architecture.

3.1 Preliminaries

State Space Models. State Space Models (SSMs) are commonly considered as linear time-invariant
systems that map stimulation x(t) 2 RL to response y(t) 2 RL. Mathematically, these models are
typically formulated as linear ordinary differential equations (ODEs) (Eq. 1), where the parameters
include A 2 CN⇥N , B,C 2 CN for a state size N , and the skip connection D 2 C1.

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)
(1)

Discretization. State Space Models (SSMs), as continuous-time models, face great challenges
when integrated into deep learning algorithms. To overcome this obstacle, the discretization process
becomes imperative.

The primary objective of discretization is to transform the ODE into a discrete function. This
transformation is crucial to align the model with the sample rate of the underlying signal embodied in
the input data, enabling computationally efficient operations [16]. Considering the input xk 2 RL⇥D,
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𝑥 𝑡 ∈ ℝ1 → 𝑦 𝑡 ∈ ℝ1, A ∈ ℂ2×2, 𝐵, 𝐶 ∈ ℂ2, 𝐷 ∈ ℂ-

Table 13: (Great Apes DNA Classi�cation.) Accuracy after �ne-tuning on sequences of length 210 = 1024 up to 220 = 1048576
using pretrained models of the same context length. Random guessing is 20%.

Model Params Accuracy (%) at Sequence Length

210 212 214 216 218 220

HyenaDNA 1.4M 28.04 28.43 41.17 42.22 31.10 54.87
Mamba 1.4M 31.47 27.50 27.66 40.72 42.41 71.67

Mamba 7M 30.00 29.01 31.48 43.73 56.60 81.31

Remark E.1. We also note that the schedule was not tuned, and we never experimented with turning o� sequence length
warmup for these pretraining experiments. We later found that SLW did not help noticeably for audio pretraining at
similar lengths (Section 4.4), and it is possible that it is not necessary for DNA pretraining either.

E.3.4 Species (Great Apes) Classi�cation

Models are causal and therefore only the last element (across the sequence length) of the model’s output is used for
the classification head. Note that we control for the total number of elements in the loss function per gradient step.
The pretraining objective includes all positions across the sequence length, so that �����_����◊��������_������
is held constant; in other words, the batch size decreases as the sequence length increases. However, for a
classification task, since only the last position enters the loss, the batch size itself is held constant. Note that this
also means that fine-tuning models with longer sequence lengths is more computationally expensive.

Training consists of 10 epochs, each of which has 1024 gradient steps. Each gradient step uses batch size 64, which
are all independently randomly drawn by uniformly picking a species, uniformly picking a chromosome, and then
uniformly picking a contiguous segment of DNA.

Following (Nguyen, Poli, et al. 2023), models with a maximum context length greater than 214 = 16384 use
sequence length warmup with 1 epoch at length 214 = 16384, 1 epoch at length 215 = 32768, 1 epoch at length
216 = 65536, and so on up to the maximum sequence length. For example, the model with 220 = 1048576 context
undergoes 6 epochs of sequence length warmup before 4 more epochs at its maximum sequence length.

The learning rate for all Hyena models is �� � �, while the learning rate for all Mamba models is �� � �. These
were found by performing learning rate sweeps for each model among {1� � 5, 2� � 5, 4� � 5, 1� � 4, 2� � 4} for
the smaller sequence lengths (210, 212, 214, 216), and these values were consistently found to be the best for each
model. An abridged learning rate sweep was done at length 218, which agreed with these values, and a single run
at length 220 was performed (as described above, the computational cost of these experiments is proportional to
the sequence length). The learning rate followed a cosine decay schedule with warmup with 5 epochs of linear
warmup to the maximum learning rate, and 5 epochs of cosine decay down to 1� � 6. The unusually long learning
rate warmup schedule was chosen because the sequence length warmup was also long (e.g. comprising 6 out of 10
epochs for the model with context length 220); we did not experiment with this choice.

Results for the Species classification task are in Table 13.

E.4 Audio Details
E.4.1 YouTubeMix Audio Pretraining

Model. We use a model with 3 blocks per stage (3 ◊ 5 = 15 total Mamba blocks), pooling factor � = 16, and
outer dimension � = 64, for about 3.5M parameters.

Dataset. The data is mu-law encoded at 8 bits, so the model is modeling discrete tokens with a vocab size of
256.
The dataset consists of clips of up to 1 minute long, or length 960000, which is subsampled and divided into
segments of any desired sequence length. Since the architecture involves two stages of pooling by a factor of 16,
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method image
size #param. FLOPs ImageNet

top-1 acc.

RegNetY-4G [36] 2242 21M 4.0G 80.0
RegNetY-8G [36] 2242 39M 8.0G 81.7

RegNetY-16G [36] 2242 84M 16.0G 82.9

EffNet-B3 [42] 3002 12M 1.8G 81.6
EffNet-B4 [42] 3802 19M 4.2G 82.9
EffNet-B5 [42] 4562 30M 9.9G 83.6
EffNet-B6 [42] 5282 43M 19.0G 84.0

ViT-B/16 [10] 3842 86M 55.4G 77.9
ViT-L/16 [10] 3842 307M 190.7G 76.5

DeiT-S [45] 2242 22M 4.6G 79.8
DeiT-B [45] 2242 86M 17.5G 81.8
DeiT-B [45] 3842 86M 55.4G 83.1

Swin-T [28] 2242 29M 4.5G 81.3
Swin-S [28] 2242 50M 8.7G 83.0
Swin-B [28] 2242 88M 15.4G 83.5

S4ND-ViT-B [35] 2242 89M - 80.4

VMamba-T 2242 22M 4.5G 82.2
VMamba-S 2242 44M 9.1G 83.5
VMamba-B 2242 75M 15.2G 83.2†

Table 2: Accuracy comparison across various models on ImageNet-1K. The symbol † indicates
that a bug is encountered during the training of VMamba-B, and we will update the correct number
in the near future.

83.2%, surpassing RegNetY-16G by 0.3% and DeiT-B by 0.1%. These promising results underscore
VMamba’s potential as a robust foundational model, extending its superiority beyond traditional
CNN models and vision transformers.

4.2 Object Detection on COCO

Settings In this section, we assess the performance of the proposed VMamba on object detection
using the MSCOCO 2017 dataset [26]. Our training framework is built on the mmdetection library [2],
and we adhere to the hyperparameters in Swin [27] with the Mask-RCNN detector. Specifically, we
employ the AdamW optimizer and fine-tune the pre-trained classification models (on ImageNet-1K)
for both 12 and 36 epochs. The drop path rates are set to 0.2%/0.2%/0.2% 2 for VMamba-T/S/B,
respectively. The learning rate is initialized at 1⇥ 10�4 and is reduced by a factor of 10⇥ at the 9th
and 11th epochs. We implement multi-scale training and random flip with a batch size of 16. These
choices align with established practices for object detection evaluations.

Results The results for COCO are summarized in Table 3. VMamba maintains superiority in
box/mask Average Precision (AP) on COCO, regardless of the training schedule employed (12 or
36 epochs). Specifically, with a 12-epoch fine-tuning schedule, VMamba-T/S/B models achieve
object detection mAPs of 46.5%/48.2%/48.5%, surpassing Swin-T/S/B by 3.8%/3.6%/1.6% mAP,
and ConvNeXt-T/S/B by 2.3%/2.8%/1.5% mAP. Using the same configuration, VMamba-T/S/B
achieves instance segmentation mIoUs of 42.1%/43.0%/43.1%, outperforming Swin-T/S/B by
2.8%/2.1%/0.8% mIoU, and ConvNeXt-T/S/B by 2.0%/1.2%/0.7% mIoU, respectively.

Furthermore, the advantages of VMamba persist under the 36-epoch fine-tuning schedule with
multi-scale training, as indicated in Table 3. When compared to counterparts, including Swin [28],
ConvNeXt [29], PVTv2 [49], and ViT [10] (with Adapters), VMamba-T/S exhibit superior per-

2All being 0.2 is due to our oversight, and we will update the latest experiments.
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method crop size mIoU (SS) mIoU (MS) #param. FLOPs

ResNet-50 5122 42.1 42.8 67M 953G
DeiT-S + MLN 5122 43.8 45.1 58M 1217G

Swin-T 5122 44.4 45.8 60M 945G
ConvNeXt-T 5122 46.0 46.7 60M 939G
VMamba-T 5122 47.3 48.3 55M 939G

ResNet-101 5122 42.9 44.0 85M 1030G
DeiT-B + MLN 5122 45.5 47.2 144M 2007G

Swin-S 5122 47.6 49.5 81M 1039G
ConvNeXt-S 5122 48.7 49.6 82M 1027G
VMamba-S 5122 49.5 50.5 76M 1037G

Swin-B 5122 48.1 49.7 121M 1188G
ConvNeXt-B 5122 49.1 49.9 122M 1170G
VMamba-B 5122 50.0 51.3 110M 1167G

Swin-S 6402 47.9 48.8 81M 1614G
ConvNeXt-S 6402 48.8 48.9 82M 1607G
VMamba-S 6402 50.8 50.8 76M 1620G

Table 4: Semantic segmentation results on ADE20K using UperNet [50]. We evaluate the
performance of semantic segmentation on the ADE20K dataset with UperNet [50]. The FLOPs are
calculated with input sizes of 512 ⇥ 2048 or 640 ⇥ 2560 based on the crop size. "SS" and "MS"
denote single-scale and multi-scale testing, respectively.

训练前后的有效感受野ERF。分别是resnet50, 
convnexttiny, swintiny, vssm tiny, deit small。
可以看到swin tiny有明显窗户形感受野，vssm感受野
训练前后变化最⼤，也弥散了整张图。Deit有⽹格状
感受野，训练前后变化不⼤，都覆盖全图。
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Figure 5: The Effective Receptive Field (ERF) is visualized for ResNet50 [19], ConvNeXt-T [29],
Swin-T [28], DeiT-S [45] (ViT), and the proposed VMamba-T. A larger ERF is indicated by a more
extensively distributed dark area. Only DeiT [45] and the proposed VMamba exhibit a global
ERF. The inspiration for this visualization is drawn from [32].

4.4 Analysis Experiments

Effective Receptive Field To assess the effective receptive fields (ERFs) [32] across various models,
we present a comparative analysis in Figure 5. The ERT measures the significance of model input
concerning its output. Visualizing the ERF of the central pixel with an input size of 1024⇥ 1024, we
compare VMamba with four prominent visual foundation models: ResNet50 [19], ConvNeXt-T [29],
Swin-T [28], and DeiT-S [45] (ViT) at both the Before training and After training stages.
Key observations from Figure 5 include: 1) Only DeiT (ViT) and VMamba exhibit global ERFs, while
other models demonstrate local ERFs, despite their theoretical global potential. It’s important to note
that the DeiT (ViT) model incurs quadratic complexity costs (refer to Figure 6). 2). In contrast to DeiT
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