

Modern Convolutional Neural Networks

Siyuan Li

Westlake University, Zhejiang University March, 2024

Timeline of Modern CNNs

Convolution Kernel Designs

Large-Kernel Conv + Gated Attentions

Content

- 1. Modern CNNs: Macro Design and Pre-training MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)
- 2. Design of Convolution Kernels

RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet

3. Combining Large Kernel with Gated Attention

VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba

Modern CNNs: Macro Design

Macro Design: Patch Embedding + Token Mixer + Channel Mixer +

Modern CNNs: ConvNeXt

[1] A ConvNet for the 2020s. CVPR, 2022.

Modern CNNs: ConvNeXt.V2

CNNs benefit from Masked Image Modeling (MIM) Pre-training.

ConvNeXt.V1 ConvNeXt_{V2}

Global Response Normalization (GRN)

gamma, beta: learnable affine transform parameters # X: input of shape (N,H,W,C)

qx = torch.norm(X, p=2, dim=(1,2), keepdim=True)nx = qx / (qx.mean(dim=-1, keepdim=True)+1e-6)return gamma * (X * nx) + beta + X

$$\begin{aligned} \mathcal{G}(X) &:= X \in \mathcal{R}^{H \times W \times C} \to gx \in \mathcal{R}^C \\ \mathcal{N}(||X_i||) &:= ||X_i|| \in \mathcal{R} \to \frac{||X_i||}{\sum_{j=1,\dots,C} ||X_j||} \in \mathcal{R} \end{aligned}$$

MIM pre-training with SparK (or FCMAE in ConvNeXt.V2)

	Backbone	Method	#param	FLOPs	Val acc.
	ConvNeXt V1-B	Supervised	89M	15.4G	83.8
	ConvNeXt V1-B	FCMAE	89M	15.4G	83.7
	ConvNeXt V2-B	Supervised	89M	15.4G	84.3 (+0.5)
	ConvNeXt V2-B	FCMAE	89M	15.4G	84.6 (+0.8)
	ConvNeXt V1-L	Supervised	198M	34.4G	84.3
	ConvNeXt V1-L	FCMAE	198M	34.4G	84.4
-i	ConvNeXt V2-L	Supervised	198M	34.4G	84.5 (+0.2)
į	ConvNeXt V2-L	FCMAE	198M	34.4G	85.6 (+1.3)

Methods	#Para.	Sup.	MoCoV3 [‡]	SimMIM [‡]	SparK	A ² MIM
Farget	(M)	Label	CL	RGB	RGB	RGB
ResNet-50	25.6	79.8	80.1	79.9	80.6	80.4
ResNet-101	44.5	81.3	81.6	81.3	82.2	81.9
ResNet-152	60.2	81.8	82.0	81.9	82.7	82.5
ResNet-200	64.7	82.1	82.5	82.2	83.1	83.0
ConvNeXt-T	28.6	82.1	82.3	82.1	82.7	82.5
ConvNeXt-S	50.2	83.1	83.3	83.2	84.1	83.7
ConvNeXt-B	88.6	83.5	83.7	83.6	84.8	84.1

[1] ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders. CVPR, 2023. [2] Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling. ICLR, 2023. [3] Architecture-Agnostic Masked Image Modeling - From ViT back to CNN. ICML, 2023.

Content

1. Modern CNNs: Macro Design and Pre-training

MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)

2. Design of Convolution Kernels

RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet

3. Combining Large Kernel with Gated Attention

VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba

Large Kernels: RepLKNet

and downstream tasks and outperforms ViTs.

- Large-Kernel (LK) Convolutions are efficient and competitive as Self-attention.
- Training extremely large convolutions with Structural Re-parameterization.

Large kernels are **shape biased** as ViTs.

Effective receptive field

[1] Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs. CVPR, 2022.

Large Kernels: SLaK

- Step 1: Decomposing a large kernel (61x61) into two rectangular, parallel kernels.
- Step 2: Using sparse groups training (speedup), expanding more width.

More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. ICLR, 2023.
 SNIP: Single-shot Network Pruning based on Connection Sensitivity. ICLR, 2019.

Large Kernels: InceptionNeXt

- MetaNeXt: Fusing Token Mixer with Channel Mixer + PreNorm + ShortCut.
- Inception Kernels: Better performance and throughputs than Depth-wise Conv 7x7.

InceptionNeXt-T (Ours)

 224^{2}

28

4.2

901 (+57%)

2900 (+20%)

82.3 (+0.2)

Conv

[1] InceptionNeXt: When Inception Meets ConvNeXt. CVPR, 2024.

g rules

 $\frac{2^{i-1}C_1}{C_i/C'}$

 $L_2 = L_4$ L_3

Kernel Designs: DCN.V3 (InternImage)

[1] Deformable Convolutional Networks. ICCV, 2017. [2] Deformable ConvNets v2: More Deformable, Better Results. CVPR, 2018. [3] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. CVPR, 2023.

1.08B

InternImage-H[#] (ours)

1478G

89.6

(a) /

(c) Co

Kernel Designs: DCN.V4 (FlashInternImage) WESTLAKE UNIVERSITY

DCN.V4: No Softmax normalization + Speed-up (reducing HRM as Flash-Atte

Content

1. Modern CNNs: Macro Design and Pre-training

MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)

2. Design of Convolution Kernels

RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet

3. Combining Large Kernel with Gated Attention

VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba

Gating & Large-kernel: VAN

Properties	Convolution	Self-Attention	LKA
Local Receptive Field	\checkmark	X	 ✓
Long-range Dependence	×	1	1
Spatial Adaptability	×	1	1
Channel Adaptability	×	×	1
Computational complexity	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$

Properties of DWConv vs. MHSA vs. Large-kernel Attention

Method	K	Dilation	Params. (M)	GFLOPs	Acc(%)
VAN-B0	7	2	4.03	0.85	74.8
VAN-B0	14	3	4.07	0.87	75.3
VAN-B0	21	3	4.11	0.88	75.4
VĀN-BO	28	4	4.14	0.90	75.4

Kernel size vs. Dilation vs. ImageNet Acc (%)

Conv21×21 = DWConv5×5 +DWConv7×7 +PWConv1×1 (Dilation=3)

Grad-CAM visualization

Attention map visualization

Gating & Hierarchical Kernel: FocalNet

Hierarchical Contextualization + Gated Aggregation.

Gating & Hierarchical Kernel: HorNet

- **Representation Bottleneck**^[1]: Loss in the middle-order interactions.
 - Multi-order $I^{(m)}(i,j) = \mathbb{E}_{S \subseteq N \setminus \{i,j\}, |S|=m} [\Delta f(i,j,S)]$ Interactions $N = \{1, \dots, n\}$ $0 \le m \ge n - 2$ $\Delta f(i, j, S) = f(S \cup \{i, j\}) - f(S \cup \{i\}) - f(S \cup \{j\}) + f(S)$

Interaction
$$J^{(m)} = \frac{\mathbb{E}_{x \in \Omega} \mathbb{E}_{i,j} |I^{(m)}(i,j|x)|}{\mathbb{E}_{m'} \mathbb{E}_{x \in \Omega} \mathbb{E}_{i,j} |I^{(m')}(i,j|x)|}$$

Both ViTs and modern CNN architectures fail to explore middle-order interactions, which are informative to humans.

[1] Discovering and Explaining the Representation Bottleneck of DNNs. ICLR, 2022. [2] MogaNet: Multi-order Gated Aggregation Network. ICLR, 2024.

• Spatial Aggregation (SA): Multi-order context extraction + Gated aggregation.

- Great scalability and efficiency of parameters.
- Relieving representation bottleneck.

MogaNet: ImageNet Classification

Light weight (3-10M)

Architecture	Date	Туре	Image	Param.	FLOPs	Top-1
			Size	(M)	(G)	Acc (%)
ResNet-18	CVPR'2016	С	224^{2}	11.7	1.80	71.5
ShuffleNetV2 $2 \times$	ECCV'2018	С	224^{2}	5.5	0.60	75.4
EfficientNet-B0	ICML'2019	С	224^{2}	5.3	0.39	77.1
RegNetY-800MF	CVPR'2020	С	224^{2}	6.3	0.80	76.3
DeiT-T [†]	ICML'2021	Т	224^{2}	5.7	1.08	74.1
PVT-T	ICCV'2021	Т	224^{2}	13.2	1.60	75.1
T2T-ViT-7	ICCV'2021	Т	224^{2}	4.3	1.20	71.7
ViT-C	NIPS'2021	Т	224^{2}	4.6	1.10	75.3
SReT-T _{Distill}	ECCV'2022	Т	224^{2}	4.8	1.10	77.6
PiT-Ti	ICCV'2021	Н	224^{2}	4.9	0.70	74.6
LeViT-S	ICCV'2021	Н	224^{2}	7.8	0.31	76.6
CoaT-Lite-T	ICCV'2021	Η	224^{2}	5.7	1.60	77.5
Swin-1G	ICCV'2021	Η	224^{2}	7.3	1.00	77.3
MobileViT-S	ICLR'2022	Η	256^{2}	5.6	4.02	78.4
MobileFormer-294M	CVPR'2022	Η	224^{2}	11.4	0.59	77.9
ConvNext-XT	CVPR'2022	С	224^{2}	7.4	0.60	77.5
VAN-B0	CVMJ'2023	С	224^{2}	4.1	0.88	75.4
ParC-Net-S	ECCV'2022	С	256^{2}	5.0	3.48	78.6
MogaNet-XT	Ours	С	256^{2}	3.0	1.04	77.2
MogaNet-T	Ours	С	224^{2}	5.2	1.10	79.0
MogaNet-T [§]	Ours	С	256^{2}	5.2	1.44	80.0

Architecture	Input	Learning	Warmup	Rand	3-Augment	EMA	Top-1
	size	rate	epochs	Augment			Acc (%)
MogaNet-XT	224^{2}	1×10^{-3}	5	7/0.5	X	X	76.5
MogaNet-XT	224^{2}	2×10^{-3}	20	X	\checkmark	X	77.1
MogaNet-XT	256^{2}	1×10^{-3}	5	7/0.5	X	X	77.2
MogaNet-XT	256^{2}	2×10^{-3}	20	X	\checkmark	X	77.6
MogaNet-T	224^{2}	1×10^{-3}	5	7/0.5	X	X	79.0
MogaNet-T	224^{2}	2×10^{-3}	20	X	\checkmark	X	79.4
MogaNet-T	256^{2}	1×10^{-3}	5	7/0.5	X	X	79.6
MogaNet-T	256^{2}	2×10^{-3}	20	X	\checkmark	X	80.0

Normal size (25-50M)

Architecture	Date	Туре	Image	Param.	FLOPs	Top-1
			Size	(M)	(G)	Acc (%)
Deit-S	ICML'2021	Т	224^{2}	22	4.6	79.8
Swin-T	ICCV'2021	Т	224^{2}	28	4.5	81.3
CSWin-T	CVPR'2022	Т	224^{2}	23	4.3	82.8
LITV2-S	NIPS'2022	Т	224^{2}	28	3.7	82.0
CoaT-S	ICCV'2021	Н	224^{2}	22	12.6	82.1
CoAtNet-0	NIPS'2021	Н	224^{2}	25	4.2	82.7
UniFormer-S	ICLR'2022	Н	224^{2}	22	3.6	82.9
RegNetY-4GF [†]	CVPR'2020	С	224^{2}	21	4.0	81.5
ConvNeXt-T	CVPR'2022	С	224^{2}	29	4.5	82.1
SLaK-T	ICLR'2023	С	224^{2}	30	5.0	82.5
HorNet- $T_{7 \times 7}$	NIPS'2022	С	224^{2}	22	4.0	82.8
MogaNet-S	Ours	С	224^{2}	25	5.0	83.4
Swin-S	ICCV'2021	Т	224^{2}	50	8.7	83.0
Focal-S	NIPS'2021	Т	224^{2}	51	9.1	83.6
CSWin-S	CVPR'2022	Т	224^{2}	35	6.9	83.6
LITV2-M	NIPS'2022	Т	224^{2}	49	7.5	83.3
CoaT-M	ICCV'2021	Н	224^{2}	45	9.8	83.6
CoAtNet-1	NIPS'2021	Η	224^{2}	42	8.4	83.3
UniFormer-B	ICLR'2022	Η	224^{2}	50	8.3	83.9
FAN-B-Hybrid	ICML'2022	Н	224^{2}	50	11.3	83.9
EfficientNet-B6	ICML'2019	С	528^{2}	43	19.0	84.0
RegNetY-8GF [†]	CVPR'2020	С	224^{2}	39	8.1	82.2
ConvNeXt-S	CVPR'2022	С	224^{2}	50	8.7	83.1
FocalNet-S (LRF)	NIPS'2022	С	224^{2}	50	8.7	83.5
HorNet-S _{7×7}	NIPS'2022	С	224^{2}	50	8.8	84.0
SLaK-S	ICLR'2023	С	224^{2}	55	9.8	83.8
MogaNet-B	Ours	С	224^{2}	44	9.9	84.3

Training and inference at the resolution of 224² or 256².

Large size (80-200M)

	DeiT-B	ICML'2021	Т	224^{2}	86	17.5	81.8	-	
	Swin-B	ICCV'2021	Т	224^{2}	89	15.4	83.5		
	Focal-B	NIPS'2021	Т	224^{2}	90	16.4	84.0		
	CSWin-B	CVPR'2022	2 T	224^{2}	78	15.0	84.2		
	DeiT III-B	ECCV'202	2 T	224^{2}	87	18.0	83.8		
	BoTNet-T7	CVPR'202	1 H	256^{2}	79	19.3	84.2		
	CoAtNet-2	NIPS'2021	Н	224^{2}	75	15.7	84.1		
	FAN-B-Hybrid	ICML'2022	2 H	224^{2}	77	16.9	84.3		
	RegNetY-16GF	CVPR'2020	0 C	224^{2}	84	16.0	82.9		
	ConvNeXt-B	CVPR'2022	2 C	224^{2}	89	15.4	83.8		
	RepLKNet-31B	CVPR'2022	2 C	224^{2}	79	15.3	83.5		
	FocalNet-B (LRF)	NIPS'2022	С	224^{2}	89	15.4	83.9		
	HorNet-B _{7×7}	NIPS'2022	С	224^{2}	87	15.6	84.3		
	SLaK-B	ICLR'2023	С	224^{2}	95	17.1	84.0		
	MogaNet-L	Ours	С	224^{2}	83	15.9	84.7		
	Swin-L [‡]	ICCV'2021	Т	384^{2}	197	104	87.3	-	
	DeiT III-L [‡]	ECCV'202	2 T	384^{2}	304	191	87.7		
	CoAtNet-3 [‡]	NIPS'2021	Н	384^{2}	168	107	87.6		
	RepLKNet-31L [‡]	CVPR'2022	2 C	384^{2}	172	96	86.6		
	ConvNeXt-L	CVPR'2022	2 C	224^{2}	198	34.4	84.3		
	ConvNeXt-L [‡]	CVPR'2022	2 C	384^{2}	198	101	87.5		
	ConvNeXt-XL [‡]	CVPR'2022	2 C	384^{2}	350	179	87.8		
	HorNet-L [‡]	NIPS'2022	С	384^{2}	202	102	87.7		
	MogaNet-XL	Ours	С	224^{2}	181	34.5	85.1		
	MogaNet-XL [‡]	Ours	С	384^{2}	181	102	87.8		
tui	e	Date	e	Type Pa	ram. M) Trair	100-epoc	h 3 cc (%) Train	00-ep Test	poch Acc
Xt	-T (Liu et al., 2022b)	CV	PR'2022	С	29 160 ²	2242	78.8 224 ²	2242	82
Xt	-S (Liu et al., 2022b)	CV	PR'2022	С	50 160 ²	224^{2}	$81.7 224^2$	224^{2}	83

			(M)	Train Test	Acc (%)	Train	Test	Acc (%)
ConvNeXt-T (Liu et al., 2022b)	CVPR'2022	С	29	160 ² 224 ²	78.8	224^{2}	224 ²	82.1
ConvNeXt-S (Liu et al., 2022b)	CVPR'2022	С	50	$160^2 \ 224^2$	81.7	224^{2}	224^{2}	83.1
ConvNeXt-B (Liu et al., 2022b)	CVPR'2022	С	89	$160^2 \ 224^2$	82.1	224^{2}	224^{2}	83.8
ConvNeXt-L (Liu et al., 2022b)	CVPR'2022	С	189	$160^2 \ 224^2$	82.8	224^{2}	224^{2}	84.3
ConvNeXt-XL (Liu et al., 2022b)	CVPR'2022	С	350	$160^2 \ 224^2$	82.9	224^{2}	224^{2}	84.5
HorNet- $T_{7\times7}$ (Rao et al., 2022)	NIPS'2022	С	22	$160^2 \ 224^2$	80.1	224^{2}	224^{2}	82.8
HorNet-S7×7 (Rao et al., 2022)	NIPS'2022	С	50	$160^2 \ 224^2$	81.2	224^{2}	224^{2}	84.0
VAN-B0 (Guo et al., 2023)	CVMJ'2023	С	4	$160^2 \ 224^2$	72.6	224^{2}	224^{2}	75.8
VAN-B2 (Guo et al., 2023)	CVMJ'2023	С	27	$160^2 \ 224^2$	81.0	224^{2}	224^{2}	82.8
VAN-B3 (Guo et al., 2023)	CVMJ'2023	С	45	$160^2 \ 224^2$	81.9	224^{2}	224^{2}	83.9
MogaNet-XT	Ours	С	3	$160^2 \ 224^2$	72.8	224^{2}	224^{2}	76.5
MogaNet-T	Ours	С	5	$160^2 \ 224^2$	75.4	224^{2}	224^{2}	79.0
MogaNet-S	Ours	С	25	$160^2 \ 224^2$	81.1	224^{2}	224^{2}	83.4
MogaNet-B	Ours	С	44	$160^2 \ 224^2$	82.2	224^{2}	224^{2}	84.3
MogaNet-L	Ours	С	83	$160^2 \ 224^2$	83.2	224^{2}	224^{2}	84.7

Architec

MogaNet: COCO Object Det. and Seg.

RetinaNet $(1 \times)$

Architecture	Туре	#P.	FLOPs			Retinal	Net 1×		
		(M)	(G)	AP	AP_{50}	AP_{75}	AP^S	AP_M	AP_L
RegNet-800M	С	17	168	35.6	54.7	37.7	19.7	390	47.8
PVTV2-B0	Т	13	160	37.1	57.2	39.2	23.4	40.4	49.2
MogaNet-XT	С	12	167	39.7	60.0	42.4	23.8	43.6	51.7
ResNet-18	С	21	189	31.8	49.6	33.6	16.3	34.3	43.2
RegNet-1.6G	С	20	185	37.4	56.8	39.8	22.4	41.1	49.2
RegNet-3.2G	С	26	218	39.0	58.4	41.9	22.6	43.5	50.8
PVT-T	Т	23	183	36.7	56.9	38.9	22.6	38.8	50.0
PoolFormer-S12	Т	22	207	36.2	56.2	38.2	20.8	39.1	48.0
PVTV2-B1	Т	24	187	41.1	61.4	43.8	26.0	44.6	54.6
MogaNet-T	С	14	173	41.4	61.5	44.4	25.1	45.7	53.6
ResNet-50	С	37	239	36.3	55.3	38.6	19.3	40.0	48.8
Swin-T	Т	38	245	41.8	62.6	44.7	25.2	45.8	54.7
PVT-S	Т	34	226	40.4	61.3	43.0	25.0	42.9	55.7
Twins-SVT-S	Т	34	209	42.3	63.4	45.2	26.0	45.5	56.5
Focal-T	Т	39	265	43.7	-	-	-	-	-
PoolFormer-S36	Т	41	272	39.5	60.5	41.8	22.5	42.9	52.4
PVTV2-B2	Т	35	281	44.6	65.7	47.6	28.6	48.5	59.2
CMT-S	Н	45	231	44.3	65.5	47.5	27.1	48.3	59.1
MogaNet-S	С	35	253	45.8	66.6	49.0	29.1	50.1	59.8
ResNet-101	С	57	315	38.5	57.8	41.2	21.4	42.6	51.1
PVT-M	Т	54	258	41.9	63.1	44.3	25.0	44.9	57.6
Focal-S	Т	62	367	45.6	-	-	-	-	-
PVTV2-B3	Т	55	263	46.0	67.0	49.5	28.2	50.0	61.3
PVTV2-B4	Т	73	315	46.3	67.0	49.6	29.0	50.1	62.7
MogaNet-B	С	54	355	47.7	68.9	51.0	30.5	52.2	61.7
ResNeXt-101-64	С	95	473	41.0	60.9	44.0	23.9	45.2	54.0
PVTV2-B5	Т	92	335	46.1	66.6	49.5	27.8	50.2	62.0
MogaNet-L	С	92	477	48.7	69.5	52.6	31.5	53.4	62.7

Inference input size 800×1280

Mask R-CNN $(1\times)$

Architecture	Туре	#P.	FLOPs	Mask R-CNN 1×					
		(M)	(G)	AP^b	AP_{50}^b	AP_{75}^b	\mathbf{AP}^m	AP_{50}^m	AP_{75}^m
RegNet-800M	С	27	187	37.5	57.9	41.1	34.3	56.0	36.8
MogaNet-XT	С	23	185	40.7	62.3	44.4	37.6	59.6	40.2
ResNet-18	С	31	207	34.0	54.0	36.7	31.2	51.0	32.7
RegNet-1.6G	С	29	204	38.9	60.5	43.1	35.7	57.4	38.9
PVT-T	Т	33	208	36.7	59.2	39.3	35.1	56.7	37.3
PoolFormer-S12	Т	32	207	37.3	59.0	40.1	34.6	55.8	36.9
MogaNet-T	С	25	192	42.6	64.0	46.4	39.1	61.3	42.0
ResNet-50	С	44	260	38.0	58.6	41.4	34.4	55.1	36.7
RegNet-6.4G	С	45	307	41.1	62.3	45.2	37.1	59.2	39.6
PVT-S	Т	44	245	40.4	62.9	43.8	37.8	60.1	40.3
Swin-T	Т	48	264	42.2	64.6	46.2	39.1	61.6	42.0
MViT-T	Т	46	326	45.9	68.7	50.5	42.1	66.0	45.4
PoolFormer-S36	Т	32	207	41.0	63.1	44.8	37.7	60.1	40.0
Focal-T	Т	49	291	44.8	67.7	49.2	41.0	64.7	44.2
PVTV2-B2	Т	45	309	45.3	67.1	49.6	41.2	64.2	44.4
LITV2-S	Т	47	261	44.9	67.0	49.5	40.8	63.8	44.2
CMT-S	Н	45	249	44.6	66.8	48.9	40.7	63.9	43.4
Conformer-S/16	Н	58	341	43.6	65.6	47.7	39.7	62.6	42.5
Uniformer-S	Н	41	269	45.6	68.1	49.7	41.6	64.8	45.0
ConvNeXt-T	С	48	262	44.2	66.6	48.3	40.1	63.3	42.8
FocalNet-T (SRF)	С	49	267	45.9	68.3	50.1	41.3	65.0	44.3
FocalNet-T (LRF)	С	49	268	46.1	68.2	50.6	41.5	65.1	44.5
MogaNet-S	С	45	272	46.7	68.0	51.3	42.2	65.4	45.5
ResNet-101	С	63	336	40.4	61.1	44.2	36.4	57.7	38.8
RegNet-12G	С	64	423	42.2	63.7	46.1	38.0	60.5	40.5
PVT-M	Т	64	302	42.0	64.4	45.6	39.0	61.6	42.1
Swin-S	Т	69	354	44.8	66.6	48.9	40.9	63.4	44.2
Focal-S	Т	71	401	47.4	69.8	51.9	42.8	66.6	46.1
PVTV2-B3	Т	65	397	47.0	68.1	51.7	42.5	65.7	45.7
LITV2-M	Т	68	315	46.5	68.0	50.9	42.0	65.1	45.0
UniFormer-B	Н	69	399	47.4	69.7	52.1	43.1	66.0	46.5
ConvNeXt-S	С	70	348	45.4	67.9	50.0	41.8	65.2	45.1
MogaNet-B	С	63	373	47.9	70.0	52.7	43.2	67.0	46.6
Swin-B	Т	107	496	46.9	69.6	51.2	42.3	65.9	45.6
PVTV2-B5	Т	102	557	47.4	68.6	51.9	42.5	65.7	46.0
ConvNeXt-B	С	108	486	47.0	69.4	51.7	42.7	66.3	46.0
FocalNet-B (SRF)	С	109	496	48.8	70.7	53.5	43.3	67.5	46.5
MogaNet-L	С	102	495	49.4	70.7	54.1	44.1	68.1	47.6

Cascade Mask R-CNN $(3\times)$

Architecture	Туре	#P.	FLOPs	С	ascade	Mask R	R-CNN	+MS 3	×
		(M)	(G)	AP^{bb}	AP_{50}^b	AP_{75}^b	$\mathrm{A}\mathrm{P}^m$	AP_{50}^m	AP_{75}^m
ResNet-50	С	77	739	46.3	64.3	50.5	40.1	61.7	43.4
Swin-T	Т	86	745	50.4	69.2	54.7	43.7	66.6	47.3
Focal-T	Т	87	770	51.5	70.6	55.9	-	-	-
ConvNeXt-T	С	86	741	50.4	69.1	54.8	43.7	66.5	47.3
FocalNet-T (SRF)	С	86	746	51.5	70.1	55.8	44.6	67.7	48.4
MogaNet-S	С	78	750	51.6	70.8	56.3	45.1	68.7	48.8
ResNet-101-32	С	96	819	48.1	66.5	52.4	41.6	63.9	45.2
Swin-S	Т	107	838	51.9	70.7	56.3	45.0	68.2	48.8
ConvNeXt-S	С	108	827	51.9	70.8	56.5	45.0	68.4	49.1
MogaNet-B	С	101	851	52.6	72.0	57.3	46.0	69.6	49.7
Swin-B	Т	145	982	51.9	70.5	56.4	45.0	68.1	48.9
ConvNeXt-B	С	146	964	52.7	71.3	57.2	45.6	68.9	49.5
MogaNet-L	С	140	974	53.3	71.8	57.8	46.1	69.2	49.8
Swin-L [‡]	Т	253	1382	53.9	72.4	58.8	46.7	70.1	50.8
ConvNeXt-L [‡]	С	255	1354	54.8	73.8	59.8	47.6	71.3	51.7
ConvNeXt-XL [‡]	С	407	1898	55.2	74.2	59.9	47.7	71.6	52.2
RepLKNet-31L [‡]	С	229	1321	53.9	72.5	58.6	46.5	70.0	50.6
HorNet-L [‡]	С	259	1399	56.0	-	-	48.6	-	-
MogaNet-XL [‡]	С	238	1355	56.2	75.0	61.2	48.8	72.6	53.3

- Object Detection: RetinaNet.
- Instance Segmentation: (Cascade) Mask R-CNN.
- Multi-scale fine-tuning with IN-21K pre-trained models.

MogaNet: ADE20K Semantic Segmentation

Semantic FPN (80K)

Method	Architecture	Date	Crop	Param.	FLOPs	$mIoU^{ss}$
			size	(M)	(G)	(%)
	PVT-S	ICCV'2021	512^{2}	28	161	39.8
Semantic	Twins-S	NIPS'2021	512^{2}	28	162	44.3
FPN	Swin-T	ICCV'2021	512^{2}	32	182	41.5
(80K)	Uniformer-S	ICLR'2022	512^{2}	25	247	46.6
	LITV2-S	NIPS'2022	512^{2}	31	179	44.3
	VAN-B2	CVMJ'2023	512^{2}	30	164	46.7
	MogaNet-S	Ours	512^{2}	29	189	47.7

MogaNet + Semantic FPN

Method	Backbone	Pretrain	Params	FLOPs	Iters	mloU	mAcc
Semantic FPN	MogaNet-XT	ImageNet-1K	6.9M	101.4G	80K	40.3	52.4
Semantic FPN	MogaNet-T	ImageNet-1K	9.1M	107.8G	80K	43.1	55.4
Semantic FPN	MogaNet-S	ImageNet-1K	29.1M	189.7G	80K	47.7	59.8
Semantic FPN	MogaNet-B	ImageNet-1K	47.5M	293.6G	80K	49.3	61.6
Semantic FPN	MogaNet-L	ImageNet-1K	86.2M	418.7G	80K	50.2	63.0

- Semantic FPN (80K) with 512×2048 inference resolutions.
- UperNet (160K) with 512×2048 or 640×2560 inference resolutions using IN-1K or IN-21K models.

ADE20K UperNet (160K)

Architecture	Date	Туре	Crop	Param.	FLOPs	mIoU ^{ss}
			size	(M)	(G)	(%)
ResNet-18	CVPR'2016	С	512^{2}	41	885	39.2
MogaNet-XT	Ours	С	512^{2}	30	856	42.2
ResNet-50	CVPR'2016	С	512^{2}	67	952	42.1
MogaNet-T	Ours	С	512^{2}	33	862	43.7
DeiT-S	ICML'2021	Т	512^{2}	52	1099	44.0
Swin-T	ICCV'2021	Т	512^{2}	60	945	46.1
TwinsP-S	NIPS'2021	Т	512^{2}	55	919	46.2
Twins-S	NIPS'2021	Т	512^{2}	54	901	46.2
Focal-T	NIPS'2021	Т	512^{2}	62	998	45.8
Uniformer-S _{h32}	ICLR'2022	Н	512^{2}	52	955	47.0
UniFormer-S	ICLR'2022	Η	512^{2}	52	1008	47.6
ConvNeXt-T	CVPR'2022	С	512^{2}	60	939	46.7
FocalNet-T (SRF)	NIPS'2022	С	512^{2}	61	944	46.5
HorNet- $T_{7\times7}$	NIPS'2022	С	512^{2}	52	926	48.1
MogaNet-S	Ours	С	512^{2}	55	946	49.2
Swin-S	ICCV'2021	Т	512^{2}	81	1038	48.1
Twins-B	NIPS'2021	Т	512^{2}	89	1020	47.7
Focal-S	NIPS'2021	Т	512^{2}	85	1130	48.0
Uniformer-B _{h32}	ICLR'2022	Η	512^{2}	80	1106	49.5
ConvNeXt-S	CVPR'2022	С	512^{2}	82	1027	48.7
FocalNet-S (SRF)	NIPS'2022	С	512^{2}	83	1035	49.3
SLaK-S	ICLR'2023	С	512^{2}	91	1028	49.4
MogaNet-B	Ours	С	512^{2}	74	1050	50.1
Swin-B	ICCV'2021	Т	512^{2}	121	1188	49.7
Focal-B	NIPS'2021	Т	512^{2}	126	1354	49.0
ConvNeXt-B	CVPR'2022	С	512^{2}	122	1170	49.1
RepLKNet-31B	CVPR'2022	С	512^{2}	112	1170	49.9
FocalNet-B (SRF)	NIPS'2022	С	512^{2}	124	1180	50.2
SLaK-B	ICLR'2023	С	512^{2}	135	1185	50.2
MogaNet-L	Ours	С	512^{2}	113	1176	50.9
Swin-L [‡]	ICCV'2021	Т	640^{2}	234	2468	52.1
ConvNeXt-L [‡]	CVPR'2022	С	640^{2}	245	2458	53.7
RepLKNet-31L [‡]	CVPR'2022	С	640^{2}	207	2404	52.4
MogaNet-XL [‡]	Ours	С	640^{2}	214	2451	54.0

MogaNet: 2D/3D Pose Estimation

COCO 2D Human Pose with

TopDown baseline (256×192)

Architecture	Туре	Crop	#P.	FLOPs	AP	AP^{50}	AP^{75}	AR
	• •	size	(M)	(G)	(%)	(%)	(%)	(%)
MobileNetV2	С	256×192	10	1.6	64.6	87.4	72.3	70.7
ShuffleNetV2 $2 \times$	С	256×192	8	1.4	59.9	85.4	66.3	66.4
MogaNet-XT	С	256×192	6	1.8	72.1	89.7	80.1	77.7
RSN-18	С	256×192	9	2.3	70.4	88.7	77.9	77.1
MogaNet-T	С	256×192	8	2.2	73.2	90.1	81.0	78.8
ResNet-50	С	256×192	34	5.5	72.1	89.9	80.2	77.6
HRNet-W32	С	256×192	29	7.1	74.4	90.5	81.9	78.9
Swin-T	Т	256×192	33	6.1	72.4	90.1	80.6	78.2
PVT-S	Т	256×192	28	4.1	71.4	89.6	79.4	77.3
PVTV2-B2	Т	256×192	29	4.3	73.7	90.5	81.2	79.1
Uniformer-S	Η	256×192	25	4.7	74.0	90.3	82.2	79.5
ConvNeXt-T	С	256×192	33	5.5	73.2	90.0	80.9	78.8
MogaNet-S	С	256×192	29	6.0	74.9	90.7	82.8	80.1
ResNet-101	С	256×192	53	12.4	71.4	89.3	79.3	77.1
ResNet-152	С	256×192	69	15.7	72.0	89.3	79.8	77.8
HRNet-W48	С	256×192	64	14.6	75.1	90.6	82.2	80.4
Swin-B	Т	256×192	93	18.6	72.9	89.9	80.8	78.6
Swin-L	Т	256×192	203	40.3	74.3	90.6	82.1	79.8
Uniformer-B	Η	256×192	54	9.2	75.0	90.6	83.0	80.4
ConvNeXt-S	С	256×192	55	9.7	73.7	90.3	81.9	79.3
ConvNeXt-B	С	256×192	94	16.4	74.0	90.7	82.1	79.5
MogaNet-B	С	256×192	47	10.9	75.3	90.9	83.3	80.7

Architecture	Type	Crop	#P	FLOPs	AP	AP ⁵⁰	AP^{75}	AR
1 in child ce ture	Type	size	(M)	(G)	(%)	(%)	(%)	(%)
MobileNetV2	С	384×288	10	3.6	67.3	87.9	74.3	72.9
ShuffleNetV2 $2 \times$	С	384×288	8	3.1	63.6	86.5	70.5	69.7
MogaNet-XT	С	384×288	6	4.2	74.7	90.1	81.3	79.9
RSN-18	С	384×288	9	5.1	72.1	89.5	79.8	78.6
MogaNet-T	С	384×288	8	4.9	75.7	90.6	82.6	80.9
HRNet-W32	С	384×288	29	16.0	75.8	90.6	82.7	81.0
Uniformer-S	Η	384×288	25	11.1	75.9	90.6	83.4	81.4
ConvNeXt-T	С	384×288	33	33.1	75.3	90.4	82.1	80.5
MogaNet-S	С	384×288	29	13.5	76.4	91.0	83.3	81.4
ResNet-152	С	384×288	69	35.6	74.3	89.6	81.1	79.7
HRNet-W48	С	384×288	64	32.9	76.3	90.8	82.0	81.2
Swin-B	Т	384×288	93	39.2	74.9	90.5	81.8	80.3
Swin-L	Т	384×288	203	86.9	76.3	91.2	83.0	814
HRFormer-B	Т	384×288	54	30.7	77.2	91.0	83.6	82.0
ConvNeXt-S	С	384×288	55	21.8	75.8	90.7	83.1	81.0
ConvNeXt-B	С	384×288	94	36.6	75.9	90.6	83.1	81.1
Uniformer-B	С	384×288	54	14.8	76.7	90.8	84.0	81.4
MogaNet-B	С	384×288	47	24.4	77.3	91.4	84.0	82.2

Architecture			Haı	nd	Face		
	Туре	#P.	FLOPs	PA-MPJPE	#P.	FLOPs	3DRMSE
		(M)	(G)	(mm)↓	(M)	(G)	\downarrow
MobileNetV2	C	4.8	0.3	8.33	4.9	0.4	2.64
ResNet-18	C	13.0	1.8	7.51	13.1	2.4	2.40
MogaNet-T	C	6.5	1.1	6.82	6.6	1.5	2.36
ResNet-50	C	26.9	4.1	6.85	27.0	5.4	2.48
ResNet-101	C	45.9	7.9	6.44	46.0	10.3	2.47
DeiT-S	Т	23.4	4.3	7.86	23.5	5.5	2.52
Swin-T	T	30.2	4.6	6.97	30.3	6.1	2.45
Swin-S	Т	51.0	13.8	6.50	50.9	8.5	2.48
ConvNeXt-T	C	29.9	4.5	6.18	30.0	5.8	2.34
ConvNeXt-S	C	51.5	8.7	6.04	51.6	11.4	2.27
HorNet-T	C	23.7	4.3	6.46	23.8	5.6	2.39
MogaNet-S	C	26.6	5.0	6.08	26.7	6.5	2.24

COCO 2D Human Pose with TopDown baseline (384×288)

3D Human Pose with Expose

- 3D Face: $FFHQ (256^2)$
- 3D Hand: FreiHand (224²)

MogaNet: Video Prediction

Architecture	#P.	FLOPs	FPS	200 epochs			2000 epochs		
	(M)	(G)	(s)	MSE↓	MAE↓	SSIM↑	MSE↓	MAE↓	SSIM↑
ViT	46.1	16.9	290	35.15	95.87	0.9139	19.74	61.65	0.9539
Swin	46.1	16.4	294	29.70	84.05	0.9331	19.11	59.84	0.9584
Uniformer	44.8	16.5	296	30.38	85.87	0.9308	18.01	57.52	0.9609
MLP-Mixer	38.2	14.7	334	29.52	83.36	0.9338	18.85	59.86	0.9589
ConvMixer	3.9	5.5	658	32.09	88.93	0.9259	22.30	67.37	0.9507
Poolformer	37.1	14.1	341	31.79	88.48	0.9271	20.96	64.31	0.9539
SimVP	58.0	19.4	209	32.15	89.05	0.9268	21.15	64.15	0.9536
ConvNeXt	37.3	14.1	344	26.94	77.23	0.9397	17.58	55.76	0.9617
VAN	44.5	16.0	288	26.10	76.11	0.9417	16.21	53.57	0.9646
HorNet	45.7	16.3	287	29.64	83.26	0.9331	17.40	55.70	0.9624
MogaNet	46.8	16.5	255	25.57	75.19	0.9429	15.67	51.84	0.9661

- Replacing the MetaFormer blocks in SimVP.
- Comparison with MMNIST and MMNIST-CIFAR.

MMNIST-CIFAR (10×3×64×64)

Method		Params (M)	FLOPs (G)	FPS	$MSE\downarrow$	$MAE\downarrow$	SSIM \uparrow	$PSNR \uparrow$
	ConvLSTM	15.0	56.8	113	73.31	338.56	0.9204	23.09
	PredNet	12.5	8.4	659	286.70	514.14	0.8139	17.49
	PredRNN	23.8	116.0	54	50.09	225.04	0.9499	24.90
Degument based	PredRNN++	38.6	171.7	38	44.19	198.27	0.9567	25.60
Recuirent-baseu	MIM	38.0	179.2	37	48.63	213.44	0.9521	25.08
	E3D-LSTM	51.0	298.9	18	80.79	214.86	0.9314	22.89
	PhyDNet	3.1	15.3	182	142.54	700.37	0.8276	19.92
	MAU	4.5	17.8	201	58.84	255.76	0.9408	24.19
	PredRNNv2	23.9	116.6	52	57.27	252.29	0.9419	24.24
	DMVFN	3.5	0.2	1145	298.73	606.92	0.7765	17.07
	SimVP	58.0	19.4	209	59.83	214.54	0.9414	24.15
	TAU	44.7	16.0	283	48.17	177.35	0.9539	25.21
	SimVPv2	46.8	16.5	282	51.13	185.13	0.9512	24.93
	ViT	46.1	16.9	290	64.94	234.01	0.9354	23.90
	Swin Transformer	46.1	16.4	294	57.11	207.45	0.9443	24.34
	Uniformer	44.8	16.5	296	56.96	207.51	0.9442	24.38
Recurrent-free	MLP-Mixer	38.2	14.7	334	57.03	206.46	0.9446	24.34
	ConvMixer	3.9	5.5	658	59.29	219.76	0.9403	24.17
	Poolformer	37.1	14.1	341	60.98	219.50	0.9399	24.16
	ConvNext	37.3	14.1	344	51.39	187.17	0.9503	24.89
	VAN	44.5	16.0	288	59.59	221.32	0.9398	25.20
	HorNet	45.7	16.3	_287	55.79	202.73	0.9456	24.49
	MogaNet	46.8	16.5	255	49.48	184.11	0.9521	25.07

[1] OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning. NeurIPS, 2023.

State-Space Models

[1] Efficiently Modeling Long Sequences with Structured State Spaces. ICLR, 2022. [2] HiPPO: Recurrent Memory with Optimal Polynomial Projections. arXiv, 2020.

[1] Linear-Time Sequence Modeling with Selective State Spaces. arXiv, 2023.

State-Space Models: VMamba

mIoU (SS) mIoU (MS) | #param. crop size **FLOPs** method 512^{2} 42.1 42.8 67M 953G ResNet-50 512^{2} DeiT-S + MLN 43.8 45.1 58M 1217G 512^{2} Swin-T 44.4 45.8 60M 945G Linear Attention 512^{2} ConvNeXt-T 46.0 46.7 939G 60M (a) $O(N^2)$ complexity → 512^{2} VMamba-T 47.3 48.3 55M 939G - --Cross-Scan Ų Q (b) O(N) complexity

ADE20K Segmentation

Thank you!

Paper: MogaNet

Code: MogaNet

Homepage

lisiyuan@westlake.edu.cn